Harnack's inequality
$begingroup$
PDE Evans, 2nd edition, Exercise 2.7
Use Poisson's formula for the ball to prove
$$r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}}u(0) le u(x) le r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}}u(0)$$
whenever $u in C^2(B^0(0,r)) cap C(partial B(0,r))$ is positive and harmonic in $B^0(0,r) subset mathbb{R}^n$. This is an explicit form of Harnack's inequality.
My proof attempt is in the answer, but I would like to know if it's correct.
proof-verification pde
$endgroup$
add a comment |
$begingroup$
PDE Evans, 2nd edition, Exercise 2.7
Use Poisson's formula for the ball to prove
$$r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}}u(0) le u(x) le r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}}u(0)$$
whenever $u in C^2(B^0(0,r)) cap C(partial B(0,r))$ is positive and harmonic in $B^0(0,r) subset mathbb{R}^n$. This is an explicit form of Harnack's inequality.
My proof attempt is in the answer, but I would like to know if it's correct.
proof-verification pde
$endgroup$
add a comment |
$begingroup$
PDE Evans, 2nd edition, Exercise 2.7
Use Poisson's formula for the ball to prove
$$r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}}u(0) le u(x) le r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}}u(0)$$
whenever $u in C^2(B^0(0,r)) cap C(partial B(0,r))$ is positive and harmonic in $B^0(0,r) subset mathbb{R}^n$. This is an explicit form of Harnack's inequality.
My proof attempt is in the answer, but I would like to know if it's correct.
proof-verification pde
$endgroup$
PDE Evans, 2nd edition, Exercise 2.7
Use Poisson's formula for the ball to prove
$$r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}}u(0) le u(x) le r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}}u(0)$$
whenever $u in C^2(B^0(0,r)) cap C(partial B(0,r))$ is positive and harmonic in $B^0(0,r) subset mathbb{R}^n$. This is an explicit form of Harnack's inequality.
My proof attempt is in the answer, but I would like to know if it's correct.
proof-verification pde
proof-verification pde
edited Oct 8 '17 at 22:50
Parisina
839922
839922
asked Jun 6 '14 at 17:13
CookieCookie
8,725123682
8,725123682
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Triangle inequality and reverse triangle inequality assert that
$$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).
Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$
Thus, begin{align}
u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
and begin{align}
u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
Therefore, Harnack's inequality has been established, as desired.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f823082%2fharnacks-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Triangle inequality and reverse triangle inequality assert that
$$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).
Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$
Thus, begin{align}
u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
and begin{align}
u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
Therefore, Harnack's inequality has been established, as desired.
$endgroup$
add a comment |
$begingroup$
Triangle inequality and reverse triangle inequality assert that
$$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).
Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$
Thus, begin{align}
u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
and begin{align}
u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
Therefore, Harnack's inequality has been established, as desired.
$endgroup$
add a comment |
$begingroup$
Triangle inequality and reverse triangle inequality assert that
$$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).
Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$
Thus, begin{align}
u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
and begin{align}
u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
Therefore, Harnack's inequality has been established, as desired.
$endgroup$
Triangle inequality and reverse triangle inequality assert that
$$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).
Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$
Thus, begin{align}
u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
and begin{align}
u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
&= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
Therefore, Harnack's inequality has been established, as desired.
edited Jun 20 '14 at 18:34
answered Jun 6 '14 at 17:30
CookieCookie
8,725123682
8,725123682
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f823082%2fharnacks-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown