Harnack's inequality












3












$begingroup$


PDE Evans, 2nd edition, Exercise 2.7




Use Poisson's formula for the ball to prove
$$r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}}u(0) le u(x) le r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}}u(0)$$
whenever $u in C^2(B^0(0,r)) cap C(partial B(0,r))$ is positive and harmonic in $B^0(0,r) subset mathbb{R}^n$. This is an explicit form of Harnack's inequality.




My proof attempt is in the answer, but I would like to know if it's correct.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    PDE Evans, 2nd edition, Exercise 2.7




    Use Poisson's formula for the ball to prove
    $$r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}}u(0) le u(x) le r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}}u(0)$$
    whenever $u in C^2(B^0(0,r)) cap C(partial B(0,r))$ is positive and harmonic in $B^0(0,r) subset mathbb{R}^n$. This is an explicit form of Harnack's inequality.




    My proof attempt is in the answer, but I would like to know if it's correct.










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      2



      $begingroup$


      PDE Evans, 2nd edition, Exercise 2.7




      Use Poisson's formula for the ball to prove
      $$r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}}u(0) le u(x) le r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}}u(0)$$
      whenever $u in C^2(B^0(0,r)) cap C(partial B(0,r))$ is positive and harmonic in $B^0(0,r) subset mathbb{R}^n$. This is an explicit form of Harnack's inequality.




      My proof attempt is in the answer, but I would like to know if it's correct.










      share|cite|improve this question











      $endgroup$




      PDE Evans, 2nd edition, Exercise 2.7




      Use Poisson's formula for the ball to prove
      $$r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}}u(0) le u(x) le r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}}u(0)$$
      whenever $u in C^2(B^0(0,r)) cap C(partial B(0,r))$ is positive and harmonic in $B^0(0,r) subset mathbb{R}^n$. This is an explicit form of Harnack's inequality.




      My proof attempt is in the answer, but I would like to know if it's correct.







      proof-verification pde






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Oct 8 '17 at 22:50









      Parisina

      839922




      839922










      asked Jun 6 '14 at 17:13









      CookieCookie

      8,725123682




      8,725123682






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Triangle inequality and reverse triangle inequality assert that
          $$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).



          Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$



          Thus, begin{align}
          u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
          &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
          &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
          and begin{align}
          u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
          &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
          &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
          Therefore, Harnack's inequality has been established, as desired.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f823082%2fharnacks-inequality%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Triangle inequality and reverse triangle inequality assert that
            $$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).



            Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$



            Thus, begin{align}
            u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
            &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
            &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
            and begin{align}
            u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
            &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
            &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
            Therefore, Harnack's inequality has been established, as desired.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              Triangle inequality and reverse triangle inequality assert that
              $$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).



              Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$



              Thus, begin{align}
              u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
              &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
              &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
              and begin{align}
              u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
              &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
              &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
              Therefore, Harnack's inequality has been established, as desired.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                Triangle inequality and reverse triangle inequality assert that
                $$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).



                Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$



                Thus, begin{align}
                u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
                &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
                &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
                and begin{align}
                u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
                &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
                &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
                Therefore, Harnack's inequality has been established, as desired.






                share|cite|improve this answer











                $endgroup$



                Triangle inequality and reverse triangle inequality assert that
                $$r-|x|le|x-y|le r+|x|$$ for all $x in B^0(0,r)$ and $y in partial B(0,r)$ (which means $|y|=r$).



                Now we appeal to Poisson's formula: $$u(x) = frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{|x-y|^n} dS(y)$$



                Thus, begin{align}
                u(x) &le frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r-|x|)^n} dS(y) \
                &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
                &= r^{n-2} frac{r+|x|}{(r-|x|)^{n-1}} u(0) end{align}
                and begin{align}
                u(x) &ge frac{r^2-|x|^2}{n alpha(n)r}int_{partial B(0,r)} frac{g(y)}{(r+|x|)^n} dS(y) \
                &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} frac{1}{n alpha(n)r^{n-1}} int_{partial B(0,r)} g(y) , dS(y) \
                &= r^{n-2} frac{r-|x|}{(r+|x|)^{n-1}} u(0) end{align}
                Therefore, Harnack's inequality has been established, as desired.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jun 20 '14 at 18:34

























                answered Jun 6 '14 at 17:30









                CookieCookie

                8,725123682




                8,725123682






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f823082%2fharnacks-inequality%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten