Limit of terms of Harmonic series
$begingroup$
Let $s(n)$ be the smallest positive integer such that $1+frac{1}{2}+frac{1}{3}+...+1/s(n)geq{n}$
Find $displaystylelim_{ntoinfty} frac{s(n+1)}{s(n)}$
The values of $s(n)$ are
$s(1)=1, s(2)=4, s(3)=11, s(4)=31, s(5)=83, s(6)=227, s(7)=616 $ and so on
$frac{s(2)}{s(1)}=4, frac{s(3)}{s(2)}=2.75, frac{s(4)}{s(3)}=2.8181..., frac{s(5)}{s(4)}=2.677..., frac{s(6)}{s(5)}=2.73493..., frac{s(7)}{s(6)}=2.713...,$
I currently can't find a formula for $s(n)$ but from the calculations I can see that the ratio converges to $e$.
Any tips on how to prove this?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
Let $s(n)$ be the smallest positive integer such that $1+frac{1}{2}+frac{1}{3}+...+1/s(n)geq{n}$
Find $displaystylelim_{ntoinfty} frac{s(n+1)}{s(n)}$
The values of $s(n)$ are
$s(1)=1, s(2)=4, s(3)=11, s(4)=31, s(5)=83, s(6)=227, s(7)=616 $ and so on
$frac{s(2)}{s(1)}=4, frac{s(3)}{s(2)}=2.75, frac{s(4)}{s(3)}=2.8181..., frac{s(5)}{s(4)}=2.677..., frac{s(6)}{s(5)}=2.73493..., frac{s(7)}{s(6)}=2.713...,$
I currently can't find a formula for $s(n)$ but from the calculations I can see that the ratio converges to $e$.
Any tips on how to prove this?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
Let $s(n)$ be the smallest positive integer such that $1+frac{1}{2}+frac{1}{3}+...+1/s(n)geq{n}$
Find $displaystylelim_{ntoinfty} frac{s(n+1)}{s(n)}$
The values of $s(n)$ are
$s(1)=1, s(2)=4, s(3)=11, s(4)=31, s(5)=83, s(6)=227, s(7)=616 $ and so on
$frac{s(2)}{s(1)}=4, frac{s(3)}{s(2)}=2.75, frac{s(4)}{s(3)}=2.8181..., frac{s(5)}{s(4)}=2.677..., frac{s(6)}{s(5)}=2.73493..., frac{s(7)}{s(6)}=2.713...,$
I currently can't find a formula for $s(n)$ but from the calculations I can see that the ratio converges to $e$.
Any tips on how to prove this?
sequences-and-series
$endgroup$
Let $s(n)$ be the smallest positive integer such that $1+frac{1}{2}+frac{1}{3}+...+1/s(n)geq{n}$
Find $displaystylelim_{ntoinfty} frac{s(n+1)}{s(n)}$
The values of $s(n)$ are
$s(1)=1, s(2)=4, s(3)=11, s(4)=31, s(5)=83, s(6)=227, s(7)=616 $ and so on
$frac{s(2)}{s(1)}=4, frac{s(3)}{s(2)}=2.75, frac{s(4)}{s(3)}=2.8181..., frac{s(5)}{s(4)}=2.677..., frac{s(6)}{s(5)}=2.73493..., frac{s(7)}{s(6)}=2.713...,$
I currently can't find a formula for $s(n)$ but from the calculations I can see that the ratio converges to $e$.
Any tips on how to prove this?
sequences-and-series
sequences-and-series
asked Dec 6 '18 at 14:16
A. BrunoA. Bruno
1035
1035
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The point is that the partial sums of the harmonic series are slowly increasing:
$$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028540%2flimit-of-terms-of-harmonic-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The point is that the partial sums of the harmonic series are slowly increasing:
$$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.
$endgroup$
add a comment |
$begingroup$
The point is that the partial sums of the harmonic series are slowly increasing:
$$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.
$endgroup$
add a comment |
$begingroup$
The point is that the partial sums of the harmonic series are slowly increasing:
$$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.
$endgroup$
The point is that the partial sums of the harmonic series are slowly increasing:
$$ H_n = sum_{k=1}^{n}frac{1}{k} = log n + underbrace{sum_{kgeq 1}left[frac{1}{n}-logleft(1+frac{1}{n}right)right]}_{gamma,approxfrac{1}{sqrt{3}}}+Oleft(frac{1}{n}right) $$
hence for any $varepsilon>0$ and for any $N$ large enough, the smallest $n$ such that $H_ngeq N$ is bounded between $expleft(N-gamma-varepsilonright)$ and $exp(N-gamma+varepsilon)$. In particular the wanted limit equals $exp(1)=e$.
answered Dec 6 '18 at 14:31
Jack D'AurizioJack D'Aurizio
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028540%2flimit-of-terms-of-harmonic-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown