Zement
Zement (lateinisch caementum „Bruchstein“, „Baustein“) ist ein anorganischer und nichtmetallischer Baustoff. Er ist feingemahlen und zählt daher zu den Schüttgütern. Aufgrund seiner Eigenschaften wird er in Zementwerken als Baustoff hergestellt und zum Anfertigen von Bauteilen und Bauwerken verwendet. Innerhalb der Baustoffe zählt Zement zu den Bindemitteln. Er erhärtet durch die chemische Reaktion mit Wasser (siehe Hydratation) und bleibt danach fest. Zur Herstellung von Baustoffen wie Mörtel und Beton werden dem Zement sogenanntes Zugabewasser (früher „Anmachwasser“) und andere Stoffe als Zuschlagstoffe beigemengt. Aufgrund der Festigkeit und Dauerhaftigkeit von Beton ist Zement weltweit eines der wichtigsten Bindemittel. Mit einer Weltproduktion von 2,8 Milliarden Tonnen ist Zement der meistverwendete Werkstoff überhaupt.
Zement wird in Zementwerken produziert. Zu seiner Herstellung werden die natürlichen Rohstoffe Kalkstein und Ton verwendet, die häufig als natürliches Gemisch vorliegen und dann als Mergel bezeichnet werden. Falls nötig, werden als Korrekturmaterialien auch Quarzsand und eisenoxidhaltige Stoffe für eine bessere Sinterung beigemischt. Die Rohstoffe werden zu Rohmehl gemahlen und anschließend auf etwa 1.450 °C erhitzt, bis sie teilweise miteinander verschmelzen (Sintern) und der sogenannte Zementklinker entsteht. Das nun kugelförmige Material wird abgekühlt und zum Endprodukt Zement gemahlen. Um Zementsorten mit bestimmten Eigenschaften zu erhalten, können vor dem Mahlen Hüttensand, Flugasche, Kalkstein und Gips in unterschiedlicher Dosierung und Mahlfeinheit zugegeben werden.
Inhaltsverzeichnis
1 Geschichte
1.1 Ursprünge
1.2 Trasszement
1.3 Portlandzement
1.4 Sonderzemente
2 Herstellungsprozess
3 Eigenschaften
3.1 Hydraulische Eigenschaften beim Abbinden
3.2 Zusammensetzung und Kenngrößen
3.3 Arten und Festigkeit
3.4 Hydratation und Festigkeitsentwicklung
3.5 Spezialzemente
3.6 Spritzzement – Spritzbindemittel
3.7 Normung
4 Umweltschutzaspekte
5 Vorsichtsmaßnahmen bei der Verarbeitung
6 Wirtschaftliche Aspekte
6.1 Zementindustrie in Deutschland
6.2 Verbraucher
6.3 Produzenten
7 Literatur
8 Fußnoten und Einzelnachweise
9 Siehe auch
10 Weblinks
10.1 Verbände
Geschichte |
Ursprünge |
Das deutsche Wort Zement geht auf die lateinische Bezeichnung opus caementitium zurück. Beim opus caementitium, das den Römern bereits vor über 2000 Jahren bekannt war, handelte es sich allerdings nicht um Zement in der heutigen Bedeutung, sondern um ein betonartiges Mauerwerk. Es kann als Vorläufer des heutigen Betons angesehen werden und bestand aus gebranntem Kalkstein als Bindemittel sowie Steinen, Sand und Puzzolanen als Zuschlag. Da das opus caementitium widerstandsfähig gegen Wasser war, wurde es zum Bau von Wasserleitungen und Hafenmolen verwendet, aber auch für Fundamente und Bauwerke wie das Kolosseum und das Pantheon.
Später wurden mit cementum, cimentum, cäment und cement Zuschlagstoffe wie vulkanische Asche, Puzzolane und Ziegelmehl bezeichnet, die man dem gebrannten Kalk zusetzte, um ein hydraulisches Bindemittel (Hydraulkalk, Wasserkalk) zu erhalten. Die Bedeutung des Tongehalts für die hydraulischen Eigenschaften des Zements (Romanzement) wurde von dem Engländer John Smeaton (1724–1792) entdeckt. Seit damals steht Zement nicht mehr für den Zuschlagstoff, sondern das Bindemittel.
Trasszement |
Trasszement ist eine übliche Bezeichnung für einen Zement, der durch die Beimischung des natürlichen Puzzolans Trass einen relativ wasserdichteren Mörtel als Portlandzement ergibt. Bei Verwendung mit Natursteinen zeigt er außerdem weniger Ausblühungen.
Portlandzement |
Kennzeichen: Hauptbestandteile sind Calcium, Silicium und Aluminium; Sinterung der Ausgangsstoffe (d. h. hohe Brenntemperatur) und anschließendes Feinmahlen.
Der Franzose Louis-Joseph Vicat (1786–1861) legte mit der Wiederentdeckung des „römischen Zements“ und der Erfindung des künstlichen hydraulischen Kalks die Grundlagen für die Entwicklung von Zement und Kalkmörtel.
Als eigentlicher Erfinder des Portlandzements gilt der Engländer Joseph Aspdin (1778–1855). 1824 erhielt er das Patent An Improvement in the Mode of Producing an Artificial Stone; in der Patentschrift benutzte er den Ausdruck „Portland cement“. Die Bezeichnung lehnte sich an den Portland-Stein an, einen Kalkstein, der auf der Halbinsel Portland an der englischen Kanalküste als Werkstein abgebaut wurde und den aus Portlandzement gefertigten Kunstprodukten farblich ähnlich war.
Dieser „Portland cement“ war noch kein Zement im heutigen Sinne, sondern künstlicher Romanzement: Die Bedeutung des Sinterns hat anscheinend als erster Isaac Charles Johnson (1811–1911) im Jahr 1844 erkannt und mit seinem verbesserten Verfahren den „echten“, überbrannten Portlandzement in das Baugewerbe eingeführt, wo er aufgrund seiner überlegenen Härte den Romanzement schnell verdrängte.[1]
1838 wurde von dem Ulmer Apotheker Gustav Ernst Leube und seinen Brüdern in Ulm das erste deutsche Zementwerk gegründet. Der erste deutsche Portlandzement nach englischem Vorbild wurde in Uetersen produziert. Die Grundlage für die Herstellung des Portlandzements in Deutschland legte Hermann Bleibtreu (1821–1881), der auch zwei Zementwerke in Züllchow bei Stettin (1855) und in Oberkassel bei Bonn errichtete. Entscheidenden Einfluss auf die weitere Entwicklung hatte Wilhelm Michaëlis (1840–1911). In seinem 1868 erschienenen Buch mit dem Titel Die hydraulischen Mörtel machte er als erster genaue Angaben über die günstigste Zusammensetzung des Rohstoffgemischs. Zu den ältesten bestehenden Bauwerken, die in Portland-Zement ausgeführt wurden, zählt die ab 1871 durch die Berliner Cement AG errichtete Alte Schmiede in der Spittastraße 40 in Berlin Lichtenberg.[2]
In der Zahnmedizin wird eine modifizierte Form des Portlandzements unter dem Namen Mineral Trioxid Aggregat (MTA) zum retrograden Verschluss von Wurzelkanälen verwendet.
Sonderzemente |
Zement ist meist ein graues Pulver. Daneben wird auch als Dyckerhoff-Weiß bezeichneter Weißzement hergestellt, der ebenso wie Weißkalkhydrat zugleich als Pigment und als Bindemittel dient.
- Tonerdezement
- Ähnlich Portlandzement, aber hoher Aluminiumanteil. Dadurch bildet sich beim Aushärten wenig Calciumhydroxid. In Deutschland nicht für tragende Strukturen zugelassen.
- Schnellzement
- Schnell aushärtender Zement, meist Mischung aus Portland- und Tonerdezement
- Faserzement
Herstellungsprozess |
Zement wird heute in modernen Zementwerken in einem kontinuierlichen Prozess aus überwiegend natürlichen Rohstoffen nach dem im Folgenden beschriebenen Trockenverfahren hergestellt. Dabei erreichen die Anlagen eine Leistung von 3.000 bis 10.000 Tonnen Klinker pro Tag. Vorgänger des Trockenverfahrens waren Nass- und Halbnassverfahren, bei denen die Rohstoffe im nassen Zustand vermahlen und gemischt wurden. Wegen des hohen Energieaufwands beim anschließenden Trocknen sind diese Verfahren heute jedoch in der Regel nicht mehr konkurrenzfähig.
In Zementwerken werden die Rohmaterialien Kalkstein (als Quelle für Calciumoxid), Ton (für Siliciumdioxid und Aluminiumoxid), Sand (für Siliciumdioxid) und Eisenerz (Eisen(III)-oxid) gebrannt und anschließend unter Beimengung von Gips, der die Aushärtegeschwindigkeit verzögert, fein vermahlen.
Die Rohstoffe werden in Steinbrüchen abgebaut, in Brechern vorzerkleinert und in das Zementwerk befördert. In einer Rohmühle werden alle Rohmaterialien zusammen vermahlen und gleichzeitig getrocknet. Das dabei entstehende Rohmehl wird dann in einem Drehrohrofen bei Temperaturen von ca. 1.400–1.450 °C zu sogenanntem Klinker gebrannt, welcher dann in einem Kühler auf eine Temperatur von unter 200 °C heruntergekühlt wird. Dabei wird das im Kalk gebundene Kohlendioxid freigesetzt. Die entstehenden graubraunen Granalien werden anschließend in einer Kugelmühle zusammen mit Gips oder Anhydrit zum fertigen Produkt, dem Zement, vermahlen.
Durch die Zumahlung von unterschiedlichen Zusatzstoffen wie z. B. Hüttensand, Puzzolan, Flugasche und Kalkstein können Zemente mit verschiedenen chemischen und physikalischen Eigenschaften hergestellt werden.
Siehe auch: Technischer Kalkkreislauf#Brennen des Kalks.
Eigenschaften |
Hydraulische Eigenschaften beim Abbinden |
Zement ist, im Gegensatz zu (Luft-)Kalkmörtel, ein hydraulisches Bindemittel. Als hydraulisch werden Stoffe angesehen, die sowohl an der Luft als auch unter Wasser erhärten und auch beständig sind. Er erhärtet nicht wie Luftkalk unter Aufnahme von Kohlenstoffdioxid aus der Luft, sondern reagiert mit Wasser unter Bildung unlöslicher, stabiler Verbindungen. Diese Verbindungen, die Calciumsilikathydrate, bilden feine nadelförmige Kristalle aus, welche sich untereinander verzahnen und so zur hohen Festigkeit eines Zementmörtels oder Betons führen.
Nebenreaktionen der Hydratation sind beispielsweise
Alkali-Kieselsäure-Reaktion. Durch Volumenzunahme kann sie zu einem Aufbrechen von Beton führen.
Puzzolanische Reaktion. Sie bewirkt eine Zunahme der Festigkeit innerhalb mehrerer Monate.- Bildung von Wollastonit (Calciumsilicat).
Zusammensetzung und Kenngrößen |
Portlandzement, hergestellt durch die Vermahlung von Klinker und Kalk bzw. Anhydrit, besteht chemisch gesehen aus ca. 58 bis 66 % Calciumoxid (CaO), 18 bis 26 % Siliciumdioxid (SiO2), 4 bis 10 % Aluminiumoxid (Al2O3) und 2 bis 5 % Eisenoxid (Fe2O3). Bei dem Brennprozess im Drehrohrofen bilden sich nach dem Calcinieren des Kalks (CaCO3) zu Calciumoxid, bei dem CO2 freigesetzt wird, durch teilweises Sintern aus diesen Hauptbestandteilen Mineralien, die für die besonderen Eigenschaften von Zement von entscheidender Bedeutung sind. Die wichtigsten dieser Verbindungen sind:
- Tricalciumsilikat (Alit), bauchemisch kurz C3S (allgemeine chemische Formel 3 CaO · SiO2)
- Dicalciumsilikat (Belit), kurz C2S (2 CaO · SiO2)
- Tricalciumaluminat, kurz C3A (3 CaO · Al2O3)
- Tetracalciumaluminatferrit, kurz C4AF bzw. C4(A,F) (4 CaO · Al2O3 · Fe2O3) und C2(A,F).
Beim Aushärten von Zement mit Wasser (Hydratation) wachsen einerseits Calciumsilicathydrat-Fasern, kurz CSH oder C3S2H3 (3 CaO · 2 SiO2 · 3 H2O), und andererseits bildet sich Portlandit, kurz CH (Ca(OH)2).
Außer der chemischen und mineralogischen Zusammensetzung ist auch die Feinheit eines Zements ausschlaggebend für seine Eigenschaften. Grundsätzlich kann gesagt werden, dass ein Zement, der feiner ist, auch eine höhere Festigkeit entwickelt. Die spezifische Oberfläche (auch als Blaine bezeichnet) dient als Maß für die Feinheit und liegt normalerweise zwischen 2.500 und 5.000 cm²/g.
Die Qualität und Zusammensetzung eines Zements wird heute ständig im Labor überwacht. Dazu werden in regelmäßigen Abständen automatisch Proben aus der laufenden Produktion entnommen und mit modernen Analysemethoden hinsichtlich ihrer Eigenschaften untersucht. Dadurch wird gewährleistet, dass auch bei schwankenden Rohstoffeigenschaften ein durchgängig konstantes Produkt hergestellt werden kann.
Arten und Festigkeit |
Bezeichnung | Druckfestigkeit [N/mm²] | Kennfarbe | |||
---|---|---|---|---|---|
nach 2 Tagen | nach 7 Tagen | nach 28 Tagen | Sackfarbe | Aufschriftfarbe | |
32,5 L | – | ≥ 12,0 | ≥ 32,5 und ≤ 52,5 | hellbraun | |
32,5 N | – | ≥ 16,0 | ≥ 32,5 und ≤ 52,5 | schwarz | |
32,5 R | ≥ 10,0 | – | ≥ 32,5 und ≤ 52,5 | rot | |
42,5 L | – | ≥ 16,0 | ≥ 42,5 und ≤ 62,5 | grün | |
42,5 N | ≥ 10,0 | – | ≥ 42,5 und ≤ 62,5 | schwarz | |
42,5 R | ≥ 20,0 | – | ≥ 42,5 und ≤ 62,5 | rot | |
52,5 L | ≥ 10,0 | – | ≥ 52,5 | rot | |
52,5 N | ≥ 20,0 | – | ≥ 52,5 | schwarz | |
52,5 R | ≥ 30,0 | – | ≥ 52,5 | weiß |
Die Festigkeit von Zementen wird in Europa durch die Europäische Norm EN 197 geregelt. Es wird zwischen drei verschiedenen Festigkeitsklassen unterschieden, mit Normfestigkeiten von 32,5, 42,5 und 52,5 N/mm² nach 28 Tagen Erhärtung. In Abhängigkeit von der Anfangsfestigkeit eines Zements wird dieser zudem innerhalb einer Festigkeitsklasse als langsam- (L), normal- (N) oder schnellerhärtend (R, von engl. rapid) bezeichnet.
Um Verwechslungen insbesondere auf der Baustelle vorzubeugen, sind den Zementen in Deutschland Kennfarben beim Papier der Zementsäcke und dem Aufdruck zugeordnet. Die Zuordnung erfolgt in der DIN 1164. Die europäische Norm verzichtet auf solche Kennzeichnungen.
Die EN 197 klassifiziert neben der Festigkeit Zemente auch nach ihrer Zusammensetzung. Fünf verschiedene Arten werden in der Norm definiert:
- CEM I – Portlandzement
- CEM II – Portlandkompositzement
- CEM III – Hochofenzement
- CEM IV – Puzzolanzement
- CEM V – Kompositzement
Hydratation und Festigkeitsentwicklung |
Das Erstarren und Erhärten des Zements beruht auf der Bildung wasserhaltiger Verbindungen, die bei der Reaktion zwischen den Zementbestandteilen und dem Zugabewasser entstehen. Im Allgemeinen wird Zement in verhältnismäßig wasserarmen, plastischen Gemischen mit Wasserzementwerten zwischen etwa 0,3 und 0,6 verwendet. Die Reaktion wird als Hydratation, die Reaktionsprodukte werden als Hydrate oder Hydratphasen bezeichnet. Eine Folge der unmittelbar einsetzenden Reaktionen ist ein Ansteifen des Zementleims, das anfangs noch sehr gering ist, sich aber mit der Zeit verstärkt. Erreicht das Ansteifen des Zementleims ein bestimmtes Maß, so spricht man vom Beginn des Erstarrens. Die zeitlich anschließende weitere Verfestigung des Zementleims gilt als Erstarren, die danach fortschreitende Verfestigung wird Erhärten genannt.
Ursache des Ansteifens, Erstarrens und Erhärtens ist die Bildung eines mehr oder weniger starren Gefüges aus Hydratationsprodukten, das den wassergefüllten Zwischenraum zwischen den Feststoffpartikeln des Zementleims, Mörtels oder Betons ausfüllt. Der zeitliche Verlauf, nicht jedoch die Art der Hydratationsprodukte, hängt daher in sehr starkem Maß von der Größe des Zwischenraums ab, d. h. vom Wasserzementwert. Die festigkeitsbildenden Hydratationsprodukte sind bei den silicatischen Zementen in erster Linie Calciumsilicathydrate und beim Tonerdezement Calciumaluminathydrate. Weitere Hydratationsprodukte sind Calciumhydroxid, Calciumferrithydrate, sulfathaltige Hydrate und verwandte Verbindungen, Hydrogranat und Gehlenithydrat.
Silicatische Zemente bestehen zu über 70 M.-% aus Calciumsilicaten oder silicatischen Bestandteilen. Daher kommt der Hydratation dieser Verbindungen und den Eigenschaften der dabei entstehenden Calciumsilicathydrate besondere Bedeutung zu. Da die Calciumsilicathydrate CaO-ärmer als die Calciumsilicate des Zementklinkers sind, bildet sich bei der Hydratation des Portlandzements außerdem Calciumhydroxid. Alle Zemente enthalten als wesentliche Bestandteile auch Aluminium- und Eisenoxide sowie Sulfate, daher bilden sich auch Calciumaluminathydrate, Calciumferrithydrate und sulfathaltige Verbindungen sowie auch komplexere Hydratationsprodukte. Der pH-Wert der Porenlösung nimmt vergleichsweise hohe Werte an und ist für die meisten Hydratationsreaktionen von besonderer Bedeutung.
Kurz nach dem Kontakt mit Wasser setzt eine kurze, intensive Hydratation ein (Prä-Induktionsperiode), Calciumsulfate gehen teilweise und Alkalisulfate nahezu vollständig in Lösung. Aus der Reaktion von Calcium- und Sulfat-Ionen mit Tricalciumaluminat bilden sich auf den Oberflächen der Klinkerpartikel kurze, hexagonal säulenförmige Ettringitkristalle. Daneben kommt es, ausgehend vom Tricalciumsilicat, zur Bildung von ersten Calciumsilicathydraten (CSH) in kolloidaler Form. Durch die Bildung einer dünnen Lage von Hydratationsprodukten auf den Klinkerpartikeln verebbt diese erste Hydratationsperiode, und die Ruheperiode oder Induktionsperiode beginnt, während der praktisch keine weitere Hydratation stattfindet. Die ersten Hydratationsprodukte sind noch zu klein, um den Raum zwischen den Zementpartikeln zu überbrücken und ein festes Gefüge aufzubauen. Damit bleiben die Zementpartikel noch gegeneinander beweglich – das bedeutet, die Konsistenz des Zementleims ist nur wenig steifer geworden. Das Erstarren des Zementleims beginnt nach etwa ein bis drei Stunden, wenn sich erste, noch sehr feine Calciumsilicathydratkristalle auf den Klinkerpartikeln bilden. Nach Abschluss der Ruheperiode setzt erneut eine intensive Hydratation der Klinkerphasen ein. Diese dritte Periode (Beschleunigungsperiode) beginnt nach etwa vier Stunden und endet nach 12 bis 24 Stunden. Dabei baut sich ein Grundgefüge auf, bestehend aus CSH-Faserbüscheln bzw. CSH-Blattstrukturen, plattigem Calciumhydroxid und in die Länge wachsenden Ettringitkristallen. Durch die größeren Kristalle werden die Räume zwischen den Zementpartikeln überbrückt. Im weiteren Hydratationsverlauf nimmt die Verfestigung stetig zu, jedoch mit reduzierter Hydratationsrate. Das Gefüge verdichtet sich dabei und die Poren werden zunehmend ausgefüllt.
Die chemischen Reaktionen der Klinkerphasen mit dem Anmachwasser lassen sich vereinfacht wie folgt darstellen:
- 2C3S + 6H → CSH + 3CH
oder ausgeschrieben als chemische Formeln:
- C3S: 2 (3 CaO⋅SiO2)+6 H2O⟶(3 CaO⋅2 SiO2⋅3 H2O)+3 Ca(OH)2{displaystyle mathrm { 2 (3 CaOcdot SiO_{2})+6 H_{2}Olongrightarrow (3 CaOcdot 2 SiO_{2}cdot 3 H_{2}O)+3 Ca(OH)_{2}} }
- C2S: 2 (2 CaO⋅SiO2)+4 H2O⟶(3 CaO⋅2 SiO2⋅3 H2O)+Ca(OH)2{displaystyle mathrm { 2 (2 CaOcdot SiO_{2})+4 H_{2}Olongrightarrow (3 CaOcdot 2 SiO_{2}cdot 3 H_{2}O)+Ca(OH)_{2}} }
- C3A: (3 CaO⋅Al2O3)+12 H2O+Ca(OH)2⟶(4 CaO⋅Al2O3⋅13 H2O){displaystyle mathrm { (3 CaOcdot Al_{2}O_{3})+12 H_{2}O+Ca(OH)_{2}longrightarrow (4 CaOcdot Al_{2}O_{3}cdot 13 H_{2}O)} }
- C4AF: (4 CaO⋅Al2O3⋅Fe2O3)+13 H2O⟶(4 CaO⋅Al2O3⋅Fe2O3⋅13 H2O){displaystyle mathrm { (4 CaOcdot Al_{2}O_{3}cdot Fe_{2}O_{3})+13 H_{2}Olongrightarrow (4 CaOcdot Al_{2}O_{3}cdot Fe_{2}O_{3}cdot 13 H_{2}O)} }
Die Hydratationsprodukte bilden sich nicht gleichzeitig, sondern entsprechend ihrer Reaktionsfähigkeit mit unterschiedlicher Geschwindigkeit und nach unterschiedlicher Dauer. Der Übergang von Erstarren zum Erhärten erfolgt „fließend“.
Spezialzemente |
Die hohen Anforderungen der Bauindustrie an den Baustoff Beton – und damit auch an das Bindemittel Zement – machen es notwendig, Zemente mit speziellen chemischen und physikalischen Eigenschaften herzustellen. Dies geschieht durch die Zumahlung verschiedener Stoffe wie Hüttensanden, Puzzolan, Flugasche oder Kalkstein in unterschiedlich großen Mengen. Diese Zemente mit besonderen Eigenschaften beeinflussen die Hydratationsgeschwindigkeit (Zement mit niedriger Hydratationswärme, LH), die Beständigkeit gegen chemische Stoffe (Zement mit hohem Sulfatwiderstand, SR, oder Zement mit niedrigem wirksamen Alkaligehalt, NA) oder auch die Verarbeitbarkeit und Festigkeit des Zementes.
Außer normalen grauen Zementen gibt es auch Weißzemente. Diese werden aus sehr eisenarmen Rohstoffen hergestellt (Fe2O3-Gehalt < 0,1 %) und hauptsächlich für Terrazzo, Sichtbeton und Putz eingesetzt. Weißzement eignet sich nicht nur für hellfarbige Zubereitungen, sondern lässt sich mit Farbpigmenten leichter einfärben als gewöhnlicher grauer Portlandzement. Dies macht man sich insbesondere bei der Herstellung farbiger Terrazzoplatten zunutze.
Thurament ist ein spezieller Zement aus Hochofenschlacke bzw. Hüttensand mit einem Anteil Gips, der in Thüringen hergestellt wird.
Celitement ist ein Spezialzement, der im Gegensatz zu herkömmlichem Zement eine wesentlich günstigere Stoff- und Energiebilanz aufweist.[4] Ähnlich robust und fest wie herkömmlicher Zement wird Celitement bei unter 500 Grad Celsius hergestellt. Dies bringt erhebliche ökologische und ökonomische Vorteile.[5]
Spritzzement – Spritzbindemittel |
Umweltfreundliche Spritzzemente oder Spritzbindemittel sind schnell erstarrende, umweltverträgliche Bindemittel, die keine Zugabe von Erstarrungsbeschleunigern bei der Herstellung von Spritzbeton erfordern und die rasche Festigkeitsentwicklung des Spritzbetons gewährleisten.
Das Prinzip der Spritzzemente bzw. Spritzbindemittel besteht im Wesentlichen darin, dass bei der Herstellung auf die Zumahlung von Rohgips zum Klinker zur Abbindezeitverzögerung verzichtet wird. Die Idee, solche Bindemittel zur Herstellung von Spritzbeton einzusetzen, hatte im Jahre 1983 Robert Keller aus Vils in Tirol. Er führte vergleichende Laborversuche mit Spritzzement einerseits und Zement mit Beschleuniger andererseits durch. In den darauf folgenden Praxisversuchen wurde das Bindemittel optimiert und weiterentwickelt. Auch Forschungsinstitute haben sich mit beschleunigerfreien Spritzzementen bzw. Spritzbindemitteln befasst. Diese Bindemittel wurden bereits auch im Tunnelbau in Österreich und Deutschland eingesetzt.
Normung |
Zement wurde schon sehr früh genormt. Aktuell wird die Zementzusammensetzung in der EN 197-1 geregelt.
Die aktuelle Norm unterscheidet im Allgemeinen 28 Zementarten. 27 der Zementarten werden nach prozentualem Gewichtsanteil der sie zusammensetzenden Stoffe unterschieden (Normalzementarten). Die letzte Zementart (Sonderzemente) ist lediglich eine Beschreibungsvorschrift, die die Bezeichnung der Zemente regelt, die in der Norm (wegen ihrer Zusammensetzung) nicht enthalten sind.
Die Anwendungen von einzelnen Zementarten sind ebenfalls genormt. Hier kommt allerdings außer der EN 197-1 in Deutschland die DIN 1164 zum Einsatz. Die DIN 1164 beschreibt, für welche Umwelteinflüsse und Einbausituationen (die Norm benutzt dazu den Begriff „Expositionsklassen“) welche Zemente vorgeschrieben sind (z. B. hüttensandhaltige Zemente für Unterwasserbeton).
Umweltschutzaspekte |
Bis in die 1960er Jahre galten Zementwerke als „Dreckschleudern“, die eine große Menge an Staub und Abgasen in die Umwelt leiteten. Obwohl Zementwerke immer noch viermal so viel CO2 freisetzen wie der weltweite Flugverkehr zusammen,[6] verbesserte sich der Umweltschutz bei der Zementherstellung danach deutlich, indem modernere Filteranlagen die Staubemission ebenso drastisch senkten wie die Weiterentwicklung der Drehrohröfen und der Feuerungstechnologie den Energieverbrauch und den Ausstoß schädlicher Abgasen wie Schwefeldioxid (SO2), Kohlenstoffdioxid (CO2) und Stickoxiden (NOx). Letztere werden durch sogenannte „SNCR-Verfahren“ (Selektive nichtkatalytische Reduktion) aus den Abgasen entfernt.
Besonderes Augenmerk wird auf die Emission von flüchtigen Spurenelementen und Schwermetallen, wie Quecksilber, Cadmium oder Thallium gelegt, während alle schwer- und nicht flüchtigen Spurenelemente durch den frisch entsäuerten Kalkstein adsorptiv gebunden werden (Prinzip der Trockensorption). In Zementen enthaltene lösliche Chromate können eine Allergie, die so genannte Maurerkrätze auslösen, wobei der hohe basische pH-Wert der wässrigen Lösung sein Übriges beiträgt.
Zur Einsparung fossiler Brennstoffe wie Kohle, Erdgas und Erdöl werden zum Teil sogenannte Sekundär- oder Ersatzbrennstoffe eingesetzt. Diese alternativen flüssigen und festen Brennstoffe wie Altöl oder Lösemittel, wie auch aufbereiteter Haus- und Gewerbemüll, Autoreifen, Tiermehl, Altholz oder andere Biomassen werden im Drehrohrofen aufgrund der oxidierenden Bedingungen und extrem hoher Temperaturen (Flammentemperatur > 2.000 °C) ohne die Entstehung zusätzlicher schädlicher Abgase verbrannt. Die Emissionen unterliegen den Standards der EU-Mit-Verbrennungsrichtline 76/2000EC, über deren Einhaltung die genehmigenden Behörden elektronisch wachen. In der Schweiz beträgt der Anteil dieser alternativen Brennstoffe mehr als 50 %. In ganz Westeuropa ist man ebenfalls bestrebt, den Anteil sogenannter Sekundärbrennstoffe im Zementwerk bis in die Größenordnung von ca. 70 % zu bringen. Dabei wird diese Entsorgungsmöglichkeit durch die Mitverbrennung, auch in Schwellenländern, als probates Mittel genutzt, kostengünstig fehlende Entsorgungsinfrastrukturen zu entwickeln und eine nachhaltige landeseigene Entsorgung unter hohen Umweltschutzstandards zu gewährleisten. Seit über 30 Jahren werden ganze Pkw- und Lkw-Altreifen (ohne voriges Schreddern) im Ofeneinlauf des Drehrohrofens thermisch und – wegen der Eisenkarkasse – stofflich genutzt.
Eine befürchtete Emission von Dioxinen oder Furanen konnte bis heute wissenschaftlich nicht belegt werden, da der hohe basische Calciumanteil, die Abgasatmosphäre sowie die dafür ungünstigen Temperaturbedingungen im geschlossenen System die sogenannte De-novo-Synthese verhindern.
Da ein Großteil der heute produzierten Zemente sogenannte Kompositzemente sind, in denen Klinker durch andere Zumahlstoffe zu gewissen Anteilen ersetzt ist, werden natürliche Rohstoffe geschont. Außerdem handelt es sich bei diesen Zumahlstoffen, beispielsweise beim Hüttensand und der Flugasche, um Rest- und Abfallstoffe aus anderen Industriezweigen. Auch die Wärmeenergiebilanz hat sich durch die intensive Nutzung von Abwärme aus dem Drehrohrofen, beispielsweise zur Mahltrocknung und zum Vorwärmen des Rohmehls, enorm verbessert. Umweltschutzrichtlinien und die damit verbundenen gesetzlichen Emissionsgrenzwerte haben dazu geführt, dass moderne Zementwerke diese Faktoren zunehmend beachten.
Ein sich mit zunehmendem Treibhauseffekt verschärfendes Problem ist allerdings der hohe Ausstoß von Kohlendioxid. Weltweit werden jährlich 4,1 Milliarden Tonnen Zement hergestellt, der im Mittel etwa 60 % CaO enthält. Damit ergibt sich durch das Freisetzen des im Kalk gebundenen Kohlendioxids, selbst bei optimaler Prozessführung, ein Ausstoß von mindestens drei Milliarden Tonnen CO2 oder etwa 6 % des jährlichen CO2-Ausstoßes. Es gibt Ansätze für neue Herstellungsprozesse, die deutlich weniger CO2 freisetzen.[6][7]
Vorsichtsmaßnahmen bei der Verarbeitung |
Unter Einfluss von Wasser entsteht im Zement eine Lauge mit hohem pH-Wert (ungefähr 13), welche zu schweren Verätzungen und Nekrosen an Haut oder Augen führen kann (Zementbrand).[8] Da die Symptome oft erst nach Stunden auftreten, wird die Gefahr oft zu spät erkannt. Daher sollten bei der Verarbeitung von Zement Brille und Handschuhe getragen werden.[9] Sollten bei der Verarbeitung von Zement Kleidung oder Handschuhe durch die Zementlauge durchnässt werden, sollten diese gewechselt werden.
Wirtschaftliche Aspekte |
Zementindustrie in Deutschland |
Die Zementindustrie in Deutschland gliedert sich in 22 Unternehmen, die zusammen 55 Zementwerke betreiben. Mit ca. 7.900 Mitarbeitern haben die deutschen Zementwerke im Jahr 2014 rund 32 Millionen Tonnen Zement hergestellt und dabei einen Umsatz von rund 2,5 Milliarden Euro erzielt. 1,2 Millionen Tonnen Zement wurden 2014, vorwiegend aus den europäischen Nachbarländern, importiert. Gleichzeitig exportierten die deutschen Hersteller rund 6,1 Millionen Tonnen Zement. Die Investitionsquote der Hersteller lag bei rund 6,5 Prozent.[10]
Verbraucher |
Den größten Bedarf an Zement hat die Volksrepublik China. Dort werden ungefähr 45 % der weltweiten Produktion verbaut. In den Jahren 2012–2014 wurde dieselbe Menge Zement verbaut wie im gesamten 20. Jahrhundert in den USA.
Nicht nur der Bauboom Chinas, sondern auch die Bauqualität spielen hier eine Rolle, da oft binnen einiger weniger Jahrzehnte Gebäude als baufällig gelten.
Der Jahresverbrauch an Zement ist so eine wichtige Kenngröße zur Intensität der Bautätigkeit in einer Region. In Ländern wie Indonesien werden nur ca. 15 bis 20 kg pro Einwohner jährlich benötigt; in Ländern wie Singapur oder den arabischen Ländern kann der Verbrauch mehr als 2.000 kg pro Einwohner im Jahr betragen. Der Verbrauch in Deutschland hat Werte um etwa 350 kg pro Einwohner im Jahr.
Produzenten |
Rang | Land | Produktion (in Mio. t) | Rang | Land | Produktion (in Mio. t) |
---|---|---|---|---|---|
1 | Volksrepublik China | 2.400,0 | 10 | Russland | 58,0 |
2 | Indien | 280,0 | 11 | Iran | 56,0 |
3 | USA | 86,3 | 12 | Brasilien | 54,0 |
4 | Vietnam | 78,0 | 13 | Japan | 53,0 |
5 | Türkei | 77,0 | 14 | Mexiko* | 35,0 |
6 | Indonesien | 66,0 | 15 | Thailand* | 35,0 |
7 | Saudi-Arabien | 63,0 | 16 | Deutschland* | 32,0 |
8 | Südkorea | 59,0 | 17 | Pakistan* | 32,0 |
9 | Ägypten | 58,0 | 18 | Italien* | 23,0 |
- Für eine ausführlichere Liste der Produktionsländer siehe Liste der größten Zementhersteller.
Literatur |
- Lothar Müller: Portlandzement. In: Chemie in unserer Zeit. Band 7, Nr. 1, 1973, S. 19–24, doi:10.1002/ciuz.19730070104.
- Friedrich W. Locher: Zement: Grundlagen der Herstellung und Verwendung. Verlag Bau + Technik, Düsseldorf 2000, ISBN 3-7640-0400-2.
- Verein Deutscher Zementwerke: Zement-Taschenbuch 2002, 50. Ausgabe. Verlag Bau + Technik, Düsseldorf 2002, ISBN 3-7640-0427-4.
- Wilhelm Scholz, Wolfram Hiese: Baustoffkenntnis. Werner Verlag, Köln 2007, ISBN 978-3-8041-5227-4.
- Georges Spicher, Hugo Marfurt, Nicolas Stoll: Ohne Zement geht nichts. Geschichte der schweizerischen Zementindustrie. NZZ Libro, Zürich 2013, ISBN 978-3-03823-835-5.
Fußnoten und Einzelnachweise |
↑ Florian Riepl: Die wirtschaftliche und technologische Entwicklung der Zementindustrie unter besonderer Berücksichtigung der Verdienste von Hans Hauenschild. Wien Juni 2008, Die Geschichte der Zemententwicklung von den frühen Anfängen bis zur Erfindung des Portlandzements – 3.6 Die Entwicklung des Portlandzements, S. 23 ff. (pdf, othes.univie.ac.at – Diplomarbeit).
↑ http://www.stadtentwicklung.berlin.de/staedtebau/foerderprogramme/denkmalschutz/de/foerdervorhaben/kaskelstrasse/index.shtml
↑ Zementeigenschaften – Druckfestigkeit. HeidelbergCement, archiviert vom Original am 8. August 2013; abgerufen am 15. Juli 2018.
↑ Celitement: Energieeffiziente Baumaterialien – Bindendes Versprechen an die Umwelt (Memento vom 20. Oktober 2012 im Internet Archive)
↑ Neuer Zement schont Klima und Ressourcen: Partner unterzeichnen Gründungsvertrag für die Celitement GmbH. auf: chemie.de, 23. Februar 2009.
↑ ab Hipp, Dietmar: Kurzer Prozess. Der Spiegel, 2. August 2010, abgerufen am 11. Oktober 2013.
↑ Mineral Commodities Summary. USGS, abgerufen am 12. Juni 2018 (englisch).
↑ Zementbrand: Nach dem Estrich in die Hautklinik. In: Ärzte-Zeitung online. 28. August 2012, abgerufen am 19. April 2015.
↑ Gesundheitsrisiken für Heimwerker. ERGO-Versicherungsgruppe, 20. März 2013, archiviert vom Original am 4. Februar 2015; abgerufen am 15. Juli 2018.
↑ Zahlen und Daten – Zementindustrie in Deutschland 2015. Verein Deutscher Zementwerke, 8. Juni 2015, abgerufen am 8. Juni 2015.
↑ Global cement production top countries 2017 | Statistic. Abgerufen am 2. Juli 2018 (englisch).
Siehe auch |
- Puzzolanische Reaktion
- Zementation (Geologie)
Weblinks |
Commons: Zement – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Zement – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Zemente und ihre Herstellung (PDF-Datei; 309 kB)
Zement-Taschenbuch, 50. Auflage 2002 (PDF-Datei; 7,3 MB)- Initiative für Nachhaltigkeit in der deutschen Zementindustrie
- Virtuelle Zementfabrik
- Deutsches Zementmuseum in Hemmoor an der Oste
Die Entwicklung des deutschen Cementes, Der Architekt, 1895
Verbände |
- Verein Deutscher Zementwerke e.V.
- Vereinigung der Österreichischen Zementindustrie
- Verband der Schweizerischen Cementindustrie
- VDZ – Darstellung der Geschichte