Is $limsup_{nrightarrowinfty}sqrt[n]{|a_n|}=frac{1}{R}=limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$?
$begingroup$
$R$ is the radius of convergence for a powerseries
I will write down my proof but I am not sure whether this is right because I thought $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|}leq limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ If I would take a sequence $(a_n)_{ninmathbb{N}}$ for which $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|} < 1 <limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ wouldn't there be a contradiction for the respective power series. Because $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|} < limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ and the statement in my question would imply $frac{1}{R}<frac{1}{R}$
Please tell me where I made the mistake in my reasoning of the following proof:
i) $frac{1}{R}=limsup_{nrightarrowinfty}sqrt[n]{|a_n|}=:tneq 0,infty$
Applying the root criteria for an arbitrary power series $sum_{n=0}^{infty}a_nz^n$
$$limsup_{nrightarrowinfty}sqrt[n]{|a_nz^n|}=limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|$$
Converges absolutely if
$$limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|<1iff |z|<frac{1}{limsup_{nrightarrowinfty}sqrt[n]{|a_n}|}=frac{1}{t}tag{*}$$
Diverges if
$$limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|>1iff |z|>frac{1}{limsup_{nrightarrowinfty}sqrt[n]{|a_n}|}=frac{1}{t}tag{**}$$
Suppose $frac{1}{R}>tiff R<frac{1}{t}Rightarrow R<frac{R+frac{1}{t}}{2}<frac{1}{t}$
$(*) Rightarrow frac{R+frac{1}{t}}{2}$, converges absolutely. Contradiction
Because $R:=sup{|z|:sum_{n=0}^{infty}a_nz^n$, converges$}$
Suppose $frac{1}{R}<t$, $(**) Rightarrow$ The power series $sum_{n=0}^{infty}a_nz^n$ diverges for $z=frac{R+frac{1}{t}}{2}$ Contradiction
Because $forall zin mathbb{C}: |z|<R, sum_{n=0}^{infty}a_nz^n $ converges absolutely.
ii) $frac{1}{R}=limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|=:tneq 0,infty$
Applying the quotient criteria for an arbitrary power series $sum_{n=0}^{infty}a_nz^n$
$$limsup_{nrightarrowinfty}|frac{a_{n+1}z^{n+1}}{a_nz^n}|iff limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z| $$
Converges absolutely if
$$limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z|<1iff|z|<frac{1}{limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|}= frac{1}{t}tag{***}$$
Diverges if
$$limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z|>1iff|z|>frac{1}{limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|}= frac{1}{t}tag{****}$$
Suppose $frac{1}{R}>tiff R<frac{1}{t}Rightarrow R<frac{R+frac{1}{t}}{2}<frac{1}{t}$
$(***) Rightarrow frac{R+frac{1}{t}}{2}$, converges absolutely. Contradiction
Because $R:=sup{|z|:sum_{n=0}^{infty}a_nz^n$, converges$}$
Suppose $frac{1}{R}<t$, $(****) Rightarrow$ The powerseries $sum_{n=0}^{infty}a_nz^n$ diverges for $z=frac{R+frac{1}{t}}{2}$ Contradiction
Because $forall zin mathbb{C}: |z|<R, sum_{n=0}^{infty}a_nz^n $ converges absolutely.
i) + ii) $Rightarrow limsup_{nrightarrowinfty}sqrt[n]{|a_n|}=frac{1}{R}=limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$
I am thinking about this for some time now please help me to solve the problem.
sequences-and-series complex-analysis limsup-and-liminf
$endgroup$
add a comment |
$begingroup$
$R$ is the radius of convergence for a powerseries
I will write down my proof but I am not sure whether this is right because I thought $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|}leq limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ If I would take a sequence $(a_n)_{ninmathbb{N}}$ for which $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|} < 1 <limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ wouldn't there be a contradiction for the respective power series. Because $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|} < limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ and the statement in my question would imply $frac{1}{R}<frac{1}{R}$
Please tell me where I made the mistake in my reasoning of the following proof:
i) $frac{1}{R}=limsup_{nrightarrowinfty}sqrt[n]{|a_n|}=:tneq 0,infty$
Applying the root criteria for an arbitrary power series $sum_{n=0}^{infty}a_nz^n$
$$limsup_{nrightarrowinfty}sqrt[n]{|a_nz^n|}=limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|$$
Converges absolutely if
$$limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|<1iff |z|<frac{1}{limsup_{nrightarrowinfty}sqrt[n]{|a_n}|}=frac{1}{t}tag{*}$$
Diverges if
$$limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|>1iff |z|>frac{1}{limsup_{nrightarrowinfty}sqrt[n]{|a_n}|}=frac{1}{t}tag{**}$$
Suppose $frac{1}{R}>tiff R<frac{1}{t}Rightarrow R<frac{R+frac{1}{t}}{2}<frac{1}{t}$
$(*) Rightarrow frac{R+frac{1}{t}}{2}$, converges absolutely. Contradiction
Because $R:=sup{|z|:sum_{n=0}^{infty}a_nz^n$, converges$}$
Suppose $frac{1}{R}<t$, $(**) Rightarrow$ The power series $sum_{n=0}^{infty}a_nz^n$ diverges for $z=frac{R+frac{1}{t}}{2}$ Contradiction
Because $forall zin mathbb{C}: |z|<R, sum_{n=0}^{infty}a_nz^n $ converges absolutely.
ii) $frac{1}{R}=limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|=:tneq 0,infty$
Applying the quotient criteria for an arbitrary power series $sum_{n=0}^{infty}a_nz^n$
$$limsup_{nrightarrowinfty}|frac{a_{n+1}z^{n+1}}{a_nz^n}|iff limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z| $$
Converges absolutely if
$$limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z|<1iff|z|<frac{1}{limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|}= frac{1}{t}tag{***}$$
Diverges if
$$limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z|>1iff|z|>frac{1}{limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|}= frac{1}{t}tag{****}$$
Suppose $frac{1}{R}>tiff R<frac{1}{t}Rightarrow R<frac{R+frac{1}{t}}{2}<frac{1}{t}$
$(***) Rightarrow frac{R+frac{1}{t}}{2}$, converges absolutely. Contradiction
Because $R:=sup{|z|:sum_{n=0}^{infty}a_nz^n$, converges$}$
Suppose $frac{1}{R}<t$, $(****) Rightarrow$ The powerseries $sum_{n=0}^{infty}a_nz^n$ diverges for $z=frac{R+frac{1}{t}}{2}$ Contradiction
Because $forall zin mathbb{C}: |z|<R, sum_{n=0}^{infty}a_nz^n $ converges absolutely.
i) + ii) $Rightarrow limsup_{nrightarrowinfty}sqrt[n]{|a_n|}=frac{1}{R}=limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$
I am thinking about this for some time now please help me to solve the problem.
sequences-and-series complex-analysis limsup-and-liminf
$endgroup$
$begingroup$
You probably want to remove the $n$'th power of $a_n$ in each one of its twelve occurrences.
$endgroup$
– uniquesolution
Dec 29 '18 at 17:22
$begingroup$
This should help: en.wikipedia.org/wiki/…
$endgroup$
– Ben W
Dec 29 '18 at 17:22
$begingroup$
Yes I will remove them
$endgroup$
– RM777
Dec 29 '18 at 17:22
$begingroup$
What's the radius of convergence of $1+2x+x^2+2x^3+x^4+2x^5+cdots$?
$endgroup$
– Lord Shark the Unknown
Dec 29 '18 at 17:27
1
$begingroup$
See en.wikipedia.org/wiki/Ratio_test and look for inconclusive.
$endgroup$
– egreg
Dec 29 '18 at 18:17
add a comment |
$begingroup$
$R$ is the radius of convergence for a powerseries
I will write down my proof but I am not sure whether this is right because I thought $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|}leq limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ If I would take a sequence $(a_n)_{ninmathbb{N}}$ for which $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|} < 1 <limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ wouldn't there be a contradiction for the respective power series. Because $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|} < limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ and the statement in my question would imply $frac{1}{R}<frac{1}{R}$
Please tell me where I made the mistake in my reasoning of the following proof:
i) $frac{1}{R}=limsup_{nrightarrowinfty}sqrt[n]{|a_n|}=:tneq 0,infty$
Applying the root criteria for an arbitrary power series $sum_{n=0}^{infty}a_nz^n$
$$limsup_{nrightarrowinfty}sqrt[n]{|a_nz^n|}=limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|$$
Converges absolutely if
$$limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|<1iff |z|<frac{1}{limsup_{nrightarrowinfty}sqrt[n]{|a_n}|}=frac{1}{t}tag{*}$$
Diverges if
$$limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|>1iff |z|>frac{1}{limsup_{nrightarrowinfty}sqrt[n]{|a_n}|}=frac{1}{t}tag{**}$$
Suppose $frac{1}{R}>tiff R<frac{1}{t}Rightarrow R<frac{R+frac{1}{t}}{2}<frac{1}{t}$
$(*) Rightarrow frac{R+frac{1}{t}}{2}$, converges absolutely. Contradiction
Because $R:=sup{|z|:sum_{n=0}^{infty}a_nz^n$, converges$}$
Suppose $frac{1}{R}<t$, $(**) Rightarrow$ The power series $sum_{n=0}^{infty}a_nz^n$ diverges for $z=frac{R+frac{1}{t}}{2}$ Contradiction
Because $forall zin mathbb{C}: |z|<R, sum_{n=0}^{infty}a_nz^n $ converges absolutely.
ii) $frac{1}{R}=limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|=:tneq 0,infty$
Applying the quotient criteria for an arbitrary power series $sum_{n=0}^{infty}a_nz^n$
$$limsup_{nrightarrowinfty}|frac{a_{n+1}z^{n+1}}{a_nz^n}|iff limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z| $$
Converges absolutely if
$$limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z|<1iff|z|<frac{1}{limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|}= frac{1}{t}tag{***}$$
Diverges if
$$limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z|>1iff|z|>frac{1}{limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|}= frac{1}{t}tag{****}$$
Suppose $frac{1}{R}>tiff R<frac{1}{t}Rightarrow R<frac{R+frac{1}{t}}{2}<frac{1}{t}$
$(***) Rightarrow frac{R+frac{1}{t}}{2}$, converges absolutely. Contradiction
Because $R:=sup{|z|:sum_{n=0}^{infty}a_nz^n$, converges$}$
Suppose $frac{1}{R}<t$, $(****) Rightarrow$ The powerseries $sum_{n=0}^{infty}a_nz^n$ diverges for $z=frac{R+frac{1}{t}}{2}$ Contradiction
Because $forall zin mathbb{C}: |z|<R, sum_{n=0}^{infty}a_nz^n $ converges absolutely.
i) + ii) $Rightarrow limsup_{nrightarrowinfty}sqrt[n]{|a_n|}=frac{1}{R}=limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$
I am thinking about this for some time now please help me to solve the problem.
sequences-and-series complex-analysis limsup-and-liminf
$endgroup$
$R$ is the radius of convergence for a powerseries
I will write down my proof but I am not sure whether this is right because I thought $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|}leq limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ If I would take a sequence $(a_n)_{ninmathbb{N}}$ for which $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|} < 1 <limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ wouldn't there be a contradiction for the respective power series. Because $$limsup_{nrightarrowinfty}sqrt[n]{|a_n|} < limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$$ and the statement in my question would imply $frac{1}{R}<frac{1}{R}$
Please tell me where I made the mistake in my reasoning of the following proof:
i) $frac{1}{R}=limsup_{nrightarrowinfty}sqrt[n]{|a_n|}=:tneq 0,infty$
Applying the root criteria for an arbitrary power series $sum_{n=0}^{infty}a_nz^n$
$$limsup_{nrightarrowinfty}sqrt[n]{|a_nz^n|}=limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|$$
Converges absolutely if
$$limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|<1iff |z|<frac{1}{limsup_{nrightarrowinfty}sqrt[n]{|a_n}|}=frac{1}{t}tag{*}$$
Diverges if
$$limsup_{nrightarrowinfty}sqrt[n]{|a_n}||z|>1iff |z|>frac{1}{limsup_{nrightarrowinfty}sqrt[n]{|a_n}|}=frac{1}{t}tag{**}$$
Suppose $frac{1}{R}>tiff R<frac{1}{t}Rightarrow R<frac{R+frac{1}{t}}{2}<frac{1}{t}$
$(*) Rightarrow frac{R+frac{1}{t}}{2}$, converges absolutely. Contradiction
Because $R:=sup{|z|:sum_{n=0}^{infty}a_nz^n$, converges$}$
Suppose $frac{1}{R}<t$, $(**) Rightarrow$ The power series $sum_{n=0}^{infty}a_nz^n$ diverges for $z=frac{R+frac{1}{t}}{2}$ Contradiction
Because $forall zin mathbb{C}: |z|<R, sum_{n=0}^{infty}a_nz^n $ converges absolutely.
ii) $frac{1}{R}=limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|=:tneq 0,infty$
Applying the quotient criteria for an arbitrary power series $sum_{n=0}^{infty}a_nz^n$
$$limsup_{nrightarrowinfty}|frac{a_{n+1}z^{n+1}}{a_nz^n}|iff limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z| $$
Converges absolutely if
$$limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z|<1iff|z|<frac{1}{limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|}= frac{1}{t}tag{***}$$
Diverges if
$$limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}||z|>1iff|z|>frac{1}{limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|}= frac{1}{t}tag{****}$$
Suppose $frac{1}{R}>tiff R<frac{1}{t}Rightarrow R<frac{R+frac{1}{t}}{2}<frac{1}{t}$
$(***) Rightarrow frac{R+frac{1}{t}}{2}$, converges absolutely. Contradiction
Because $R:=sup{|z|:sum_{n=0}^{infty}a_nz^n$, converges$}$
Suppose $frac{1}{R}<t$, $(****) Rightarrow$ The powerseries $sum_{n=0}^{infty}a_nz^n$ diverges for $z=frac{R+frac{1}{t}}{2}$ Contradiction
Because $forall zin mathbb{C}: |z|<R, sum_{n=0}^{infty}a_nz^n $ converges absolutely.
i) + ii) $Rightarrow limsup_{nrightarrowinfty}sqrt[n]{|a_n|}=frac{1}{R}=limsup_{nrightarrowinfty}|frac{a_{n+1}}{a_n}|$
I am thinking about this for some time now please help me to solve the problem.
sequences-and-series complex-analysis limsup-and-liminf
sequences-and-series complex-analysis limsup-and-liminf
edited Dec 30 '18 at 11:04
LutzL
60.9k42157
60.9k42157
asked Dec 29 '18 at 17:17
RM777RM777
38312
38312
$begingroup$
You probably want to remove the $n$'th power of $a_n$ in each one of its twelve occurrences.
$endgroup$
– uniquesolution
Dec 29 '18 at 17:22
$begingroup$
This should help: en.wikipedia.org/wiki/…
$endgroup$
– Ben W
Dec 29 '18 at 17:22
$begingroup$
Yes I will remove them
$endgroup$
– RM777
Dec 29 '18 at 17:22
$begingroup$
What's the radius of convergence of $1+2x+x^2+2x^3+x^4+2x^5+cdots$?
$endgroup$
– Lord Shark the Unknown
Dec 29 '18 at 17:27
1
$begingroup$
See en.wikipedia.org/wiki/Ratio_test and look for inconclusive.
$endgroup$
– egreg
Dec 29 '18 at 18:17
add a comment |
$begingroup$
You probably want to remove the $n$'th power of $a_n$ in each one of its twelve occurrences.
$endgroup$
– uniquesolution
Dec 29 '18 at 17:22
$begingroup$
This should help: en.wikipedia.org/wiki/…
$endgroup$
– Ben W
Dec 29 '18 at 17:22
$begingroup$
Yes I will remove them
$endgroup$
– RM777
Dec 29 '18 at 17:22
$begingroup$
What's the radius of convergence of $1+2x+x^2+2x^3+x^4+2x^5+cdots$?
$endgroup$
– Lord Shark the Unknown
Dec 29 '18 at 17:27
1
$begingroup$
See en.wikipedia.org/wiki/Ratio_test and look for inconclusive.
$endgroup$
– egreg
Dec 29 '18 at 18:17
$begingroup$
You probably want to remove the $n$'th power of $a_n$ in each one of its twelve occurrences.
$endgroup$
– uniquesolution
Dec 29 '18 at 17:22
$begingroup$
You probably want to remove the $n$'th power of $a_n$ in each one of its twelve occurrences.
$endgroup$
– uniquesolution
Dec 29 '18 at 17:22
$begingroup$
This should help: en.wikipedia.org/wiki/…
$endgroup$
– Ben W
Dec 29 '18 at 17:22
$begingroup$
This should help: en.wikipedia.org/wiki/…
$endgroup$
– Ben W
Dec 29 '18 at 17:22
$begingroup$
Yes I will remove them
$endgroup$
– RM777
Dec 29 '18 at 17:22
$begingroup$
Yes I will remove them
$endgroup$
– RM777
Dec 29 '18 at 17:22
$begingroup$
What's the radius of convergence of $1+2x+x^2+2x^3+x^4+2x^5+cdots$?
$endgroup$
– Lord Shark the Unknown
Dec 29 '18 at 17:27
$begingroup$
What's the radius of convergence of $1+2x+x^2+2x^3+x^4+2x^5+cdots$?
$endgroup$
– Lord Shark the Unknown
Dec 29 '18 at 17:27
1
1
$begingroup$
See en.wikipedia.org/wiki/Ratio_test and look for inconclusive.
$endgroup$
– egreg
Dec 29 '18 at 18:17
$begingroup$
See en.wikipedia.org/wiki/Ratio_test and look for inconclusive.
$endgroup$
– egreg
Dec 29 '18 at 18:17
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your reading of the quotient criterion is partly wrong. The rule for divergence is that if
$$
liminf_{ntoinfty}frac{|a_{n+1}z^{n+1}|}{|a_nz^n|}=|z|liminf_{ntoinfty}frac{|a_{n+1}|}{|a_n|}>1
$$
then the power series diverges. This gives you a third radius to consider. Thus you get
$$
R_{quot, sup}le R_{root, sup}le R_{quot,inf}
$$
and only the radius $R_{root, sup}$ of the root criterion gives the exact region of convergence of the power series. If the coefficient quotients to not have a strict limit, the quotient criterion leaves out an annulus where no claim towards convergence or divergence is possible.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056054%2fis-limsup-n-rightarrow-infty-sqrtna-n-frac1r-limsup-n-rightarro%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your reading of the quotient criterion is partly wrong. The rule for divergence is that if
$$
liminf_{ntoinfty}frac{|a_{n+1}z^{n+1}|}{|a_nz^n|}=|z|liminf_{ntoinfty}frac{|a_{n+1}|}{|a_n|}>1
$$
then the power series diverges. This gives you a third radius to consider. Thus you get
$$
R_{quot, sup}le R_{root, sup}le R_{quot,inf}
$$
and only the radius $R_{root, sup}$ of the root criterion gives the exact region of convergence of the power series. If the coefficient quotients to not have a strict limit, the quotient criterion leaves out an annulus where no claim towards convergence or divergence is possible.
$endgroup$
add a comment |
$begingroup$
Your reading of the quotient criterion is partly wrong. The rule for divergence is that if
$$
liminf_{ntoinfty}frac{|a_{n+1}z^{n+1}|}{|a_nz^n|}=|z|liminf_{ntoinfty}frac{|a_{n+1}|}{|a_n|}>1
$$
then the power series diverges. This gives you a third radius to consider. Thus you get
$$
R_{quot, sup}le R_{root, sup}le R_{quot,inf}
$$
and only the radius $R_{root, sup}$ of the root criterion gives the exact region of convergence of the power series. If the coefficient quotients to not have a strict limit, the quotient criterion leaves out an annulus where no claim towards convergence or divergence is possible.
$endgroup$
add a comment |
$begingroup$
Your reading of the quotient criterion is partly wrong. The rule for divergence is that if
$$
liminf_{ntoinfty}frac{|a_{n+1}z^{n+1}|}{|a_nz^n|}=|z|liminf_{ntoinfty}frac{|a_{n+1}|}{|a_n|}>1
$$
then the power series diverges. This gives you a third radius to consider. Thus you get
$$
R_{quot, sup}le R_{root, sup}le R_{quot,inf}
$$
and only the radius $R_{root, sup}$ of the root criterion gives the exact region of convergence of the power series. If the coefficient quotients to not have a strict limit, the quotient criterion leaves out an annulus where no claim towards convergence or divergence is possible.
$endgroup$
Your reading of the quotient criterion is partly wrong. The rule for divergence is that if
$$
liminf_{ntoinfty}frac{|a_{n+1}z^{n+1}|}{|a_nz^n|}=|z|liminf_{ntoinfty}frac{|a_{n+1}|}{|a_n|}>1
$$
then the power series diverges. This gives you a third radius to consider. Thus you get
$$
R_{quot, sup}le R_{root, sup}le R_{quot,inf}
$$
and only the radius $R_{root, sup}$ of the root criterion gives the exact region of convergence of the power series. If the coefficient quotients to not have a strict limit, the quotient criterion leaves out an annulus where no claim towards convergence or divergence is possible.
answered Dec 30 '18 at 11:10
LutzLLutzL
60.9k42157
60.9k42157
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056054%2fis-limsup-n-rightarrow-infty-sqrtna-n-frac1r-limsup-n-rightarro%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You probably want to remove the $n$'th power of $a_n$ in each one of its twelve occurrences.
$endgroup$
– uniquesolution
Dec 29 '18 at 17:22
$begingroup$
This should help: en.wikipedia.org/wiki/…
$endgroup$
– Ben W
Dec 29 '18 at 17:22
$begingroup$
Yes I will remove them
$endgroup$
– RM777
Dec 29 '18 at 17:22
$begingroup$
What's the radius of convergence of $1+2x+x^2+2x^3+x^4+2x^5+cdots$?
$endgroup$
– Lord Shark the Unknown
Dec 29 '18 at 17:27
1
$begingroup$
See en.wikipedia.org/wiki/Ratio_test and look for inconclusive.
$endgroup$
– egreg
Dec 29 '18 at 18:17