Proving reduction formula using integration by parts
$begingroup$
I'm having difficulty proving this integral reduction formula by parts
If
$$I_n=intfrac{dx}{(a^2-x^2)^n}$$
, then
$$intfrac{dx}{(a^2-x^2)^n}=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$
I managed to do it using a trigonometric substitution:
$$intfrac{dx}{(a^2-x^2)^n}spacebegin{vmatrix}x=asin(theta)\dx=acos(theta)dthetaend{vmatrix}=intfrac{acos(theta)}{(a^2 a^2sin^2(theta))^n}dtheta=intfrac{acos(theta)}{a^{2n}cos^{2n}(theta)}dtheta\=frac{1}{a^{2n-1}}intsec^{2n-1}(theta)dtheta$$
Using the reduction formula
$$intsec^n(theta)dtheta=frac{1}{n-1}sec^{n-2}(theta)tan(theta)+left(frac{n-2}{n-1}right)intsec^{n-2}(theta)dtheta$$
this integral becomes
$$frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]$$
Based on the substitution $x=asin(theta)$ and $dx=acos(theta)dtheta$:
$$sec(theta)=frac{a}{sqrt{a^2-x^2}}quadtan(theta)=frac{x}{sqrt{a^2-x^2}}quad dtheta=frac{dx}{sqrt{a^2-x^2}}$$
So
$$intfrac{dx}{(a^2-x^2)^n}=frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]\=frac{1}{a^{2n-1}}bigg[frac{1}{2(n-1)}bigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{x}{sqrt{a^2-x^2}}bigg)+left(frac{2n-3}{2(n-1)}right)intbigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{dx}{sqrt{a^2-x^2}}bigg)bigg]\=frac{1}{a^{2n-1}}bigg[frac{a^{2n-3}x}{2(n-1)(sqrt{a^2-x^2})^{2n-2}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(sqrt{a^2-x^2})^{2n-2}}dxbigg]\=frac{1}{a^{2n-1}}left[frac{a^{2n-3}x}{2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(a^2-x^2)^{n-1}}dxright]\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)intfrac{dx}{(a^2-x^2)^{n-1}}\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$
However I also wanted to prove this using integration by parts but I seem to be stuck:
$$intfrac{dx}{(a^2-x^2)^n}=intfrac{x}{x(a^2-x^2)^n}dxspacebegin{vmatrix}u=frac{1}{x}\du=-frac{1}{x^2}dxend{vmatrix}dv=frac{x}{(a^2-x^2)^n}dx\v=intfrac{x}{(a^2-x^2)^n}dxbegin{vmatrix}u=a^2-x^2\du=-2xdxend{vmatrix}v=-frac{1}{2}intfrac{du}{u^n}=-frac{1}{2}left(frac{u^{-n+1}}{-n+1}right)\=-frac{1}{2(1-n)u^{n-1}}=-frac{1}{2(1-n)(a^2-x^2)^{n-1}}\int udv=uv-int vdu\intfrac{dx}{(a^2-x^2)^n}=-frac{1}{2x(1-n)(a^2-x^2)^{n-1}}-frac{1}{2(n-1)}intfrac{1}{x^2(a^2-x^2)^{n-1}}dx$$
Don't know how to proceed from here, any help?
calculus integration reduction-formula
$endgroup$
add a comment |
$begingroup$
I'm having difficulty proving this integral reduction formula by parts
If
$$I_n=intfrac{dx}{(a^2-x^2)^n}$$
, then
$$intfrac{dx}{(a^2-x^2)^n}=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$
I managed to do it using a trigonometric substitution:
$$intfrac{dx}{(a^2-x^2)^n}spacebegin{vmatrix}x=asin(theta)\dx=acos(theta)dthetaend{vmatrix}=intfrac{acos(theta)}{(a^2 a^2sin^2(theta))^n}dtheta=intfrac{acos(theta)}{a^{2n}cos^{2n}(theta)}dtheta\=frac{1}{a^{2n-1}}intsec^{2n-1}(theta)dtheta$$
Using the reduction formula
$$intsec^n(theta)dtheta=frac{1}{n-1}sec^{n-2}(theta)tan(theta)+left(frac{n-2}{n-1}right)intsec^{n-2}(theta)dtheta$$
this integral becomes
$$frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]$$
Based on the substitution $x=asin(theta)$ and $dx=acos(theta)dtheta$:
$$sec(theta)=frac{a}{sqrt{a^2-x^2}}quadtan(theta)=frac{x}{sqrt{a^2-x^2}}quad dtheta=frac{dx}{sqrt{a^2-x^2}}$$
So
$$intfrac{dx}{(a^2-x^2)^n}=frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]\=frac{1}{a^{2n-1}}bigg[frac{1}{2(n-1)}bigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{x}{sqrt{a^2-x^2}}bigg)+left(frac{2n-3}{2(n-1)}right)intbigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{dx}{sqrt{a^2-x^2}}bigg)bigg]\=frac{1}{a^{2n-1}}bigg[frac{a^{2n-3}x}{2(n-1)(sqrt{a^2-x^2})^{2n-2}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(sqrt{a^2-x^2})^{2n-2}}dxbigg]\=frac{1}{a^{2n-1}}left[frac{a^{2n-3}x}{2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(a^2-x^2)^{n-1}}dxright]\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)intfrac{dx}{(a^2-x^2)^{n-1}}\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$
However I also wanted to prove this using integration by parts but I seem to be stuck:
$$intfrac{dx}{(a^2-x^2)^n}=intfrac{x}{x(a^2-x^2)^n}dxspacebegin{vmatrix}u=frac{1}{x}\du=-frac{1}{x^2}dxend{vmatrix}dv=frac{x}{(a^2-x^2)^n}dx\v=intfrac{x}{(a^2-x^2)^n}dxbegin{vmatrix}u=a^2-x^2\du=-2xdxend{vmatrix}v=-frac{1}{2}intfrac{du}{u^n}=-frac{1}{2}left(frac{u^{-n+1}}{-n+1}right)\=-frac{1}{2(1-n)u^{n-1}}=-frac{1}{2(1-n)(a^2-x^2)^{n-1}}\int udv=uv-int vdu\intfrac{dx}{(a^2-x^2)^n}=-frac{1}{2x(1-n)(a^2-x^2)^{n-1}}-frac{1}{2(n-1)}intfrac{1}{x^2(a^2-x^2)^{n-1}}dx$$
Don't know how to proceed from here, any help?
calculus integration reduction-formula
$endgroup$
$begingroup$
Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 17:49
add a comment |
$begingroup$
I'm having difficulty proving this integral reduction formula by parts
If
$$I_n=intfrac{dx}{(a^2-x^2)^n}$$
, then
$$intfrac{dx}{(a^2-x^2)^n}=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$
I managed to do it using a trigonometric substitution:
$$intfrac{dx}{(a^2-x^2)^n}spacebegin{vmatrix}x=asin(theta)\dx=acos(theta)dthetaend{vmatrix}=intfrac{acos(theta)}{(a^2 a^2sin^2(theta))^n}dtheta=intfrac{acos(theta)}{a^{2n}cos^{2n}(theta)}dtheta\=frac{1}{a^{2n-1}}intsec^{2n-1}(theta)dtheta$$
Using the reduction formula
$$intsec^n(theta)dtheta=frac{1}{n-1}sec^{n-2}(theta)tan(theta)+left(frac{n-2}{n-1}right)intsec^{n-2}(theta)dtheta$$
this integral becomes
$$frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]$$
Based on the substitution $x=asin(theta)$ and $dx=acos(theta)dtheta$:
$$sec(theta)=frac{a}{sqrt{a^2-x^2}}quadtan(theta)=frac{x}{sqrt{a^2-x^2}}quad dtheta=frac{dx}{sqrt{a^2-x^2}}$$
So
$$intfrac{dx}{(a^2-x^2)^n}=frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]\=frac{1}{a^{2n-1}}bigg[frac{1}{2(n-1)}bigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{x}{sqrt{a^2-x^2}}bigg)+left(frac{2n-3}{2(n-1)}right)intbigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{dx}{sqrt{a^2-x^2}}bigg)bigg]\=frac{1}{a^{2n-1}}bigg[frac{a^{2n-3}x}{2(n-1)(sqrt{a^2-x^2})^{2n-2}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(sqrt{a^2-x^2})^{2n-2}}dxbigg]\=frac{1}{a^{2n-1}}left[frac{a^{2n-3}x}{2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(a^2-x^2)^{n-1}}dxright]\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)intfrac{dx}{(a^2-x^2)^{n-1}}\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$
However I also wanted to prove this using integration by parts but I seem to be stuck:
$$intfrac{dx}{(a^2-x^2)^n}=intfrac{x}{x(a^2-x^2)^n}dxspacebegin{vmatrix}u=frac{1}{x}\du=-frac{1}{x^2}dxend{vmatrix}dv=frac{x}{(a^2-x^2)^n}dx\v=intfrac{x}{(a^2-x^2)^n}dxbegin{vmatrix}u=a^2-x^2\du=-2xdxend{vmatrix}v=-frac{1}{2}intfrac{du}{u^n}=-frac{1}{2}left(frac{u^{-n+1}}{-n+1}right)\=-frac{1}{2(1-n)u^{n-1}}=-frac{1}{2(1-n)(a^2-x^2)^{n-1}}\int udv=uv-int vdu\intfrac{dx}{(a^2-x^2)^n}=-frac{1}{2x(1-n)(a^2-x^2)^{n-1}}-frac{1}{2(n-1)}intfrac{1}{x^2(a^2-x^2)^{n-1}}dx$$
Don't know how to proceed from here, any help?
calculus integration reduction-formula
$endgroup$
I'm having difficulty proving this integral reduction formula by parts
If
$$I_n=intfrac{dx}{(a^2-x^2)^n}$$
, then
$$intfrac{dx}{(a^2-x^2)^n}=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$
I managed to do it using a trigonometric substitution:
$$intfrac{dx}{(a^2-x^2)^n}spacebegin{vmatrix}x=asin(theta)\dx=acos(theta)dthetaend{vmatrix}=intfrac{acos(theta)}{(a^2 a^2sin^2(theta))^n}dtheta=intfrac{acos(theta)}{a^{2n}cos^{2n}(theta)}dtheta\=frac{1}{a^{2n-1}}intsec^{2n-1}(theta)dtheta$$
Using the reduction formula
$$intsec^n(theta)dtheta=frac{1}{n-1}sec^{n-2}(theta)tan(theta)+left(frac{n-2}{n-1}right)intsec^{n-2}(theta)dtheta$$
this integral becomes
$$frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]$$
Based on the substitution $x=asin(theta)$ and $dx=acos(theta)dtheta$:
$$sec(theta)=frac{a}{sqrt{a^2-x^2}}quadtan(theta)=frac{x}{sqrt{a^2-x^2}}quad dtheta=frac{dx}{sqrt{a^2-x^2}}$$
So
$$intfrac{dx}{(a^2-x^2)^n}=frac{1}{a^{2n-1}}left[frac{1}{2(n-1)}sec^{2n-3}(theta)tan(theta)+left(frac{2n-3}{2(n-1)}right)intsec^{2n-3}(theta)dthetaright]\=frac{1}{a^{2n-1}}bigg[frac{1}{2(n-1)}bigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{x}{sqrt{a^2-x^2}}bigg)+left(frac{2n-3}{2(n-1)}right)intbigg(frac{a}{sqrt{a^2-x^2}}bigg)^{2n-3}bigg(frac{dx}{sqrt{a^2-x^2}}bigg)bigg]\=frac{1}{a^{2n-1}}bigg[frac{a^{2n-3}x}{2(n-1)(sqrt{a^2-x^2})^{2n-2}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(sqrt{a^2-x^2})^{2n-2}}dxbigg]\=frac{1}{a^{2n-1}}left[frac{a^{2n-3}x}{2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2(n-1)}right)intfrac{a^{2n-3}}{(a^2-x^2)^{n-1}}dxright]\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)intfrac{dx}{(a^2-x^2)^{n-1}}\=frac{x}{2a^2(n-1)(a^2-x^2)^{n-1}}+left(frac{2n-3}{2a^2(n-1)}right)I_{n-1}$$
However I also wanted to prove this using integration by parts but I seem to be stuck:
$$intfrac{dx}{(a^2-x^2)^n}=intfrac{x}{x(a^2-x^2)^n}dxspacebegin{vmatrix}u=frac{1}{x}\du=-frac{1}{x^2}dxend{vmatrix}dv=frac{x}{(a^2-x^2)^n}dx\v=intfrac{x}{(a^2-x^2)^n}dxbegin{vmatrix}u=a^2-x^2\du=-2xdxend{vmatrix}v=-frac{1}{2}intfrac{du}{u^n}=-frac{1}{2}left(frac{u^{-n+1}}{-n+1}right)\=-frac{1}{2(1-n)u^{n-1}}=-frac{1}{2(1-n)(a^2-x^2)^{n-1}}\int udv=uv-int vdu\intfrac{dx}{(a^2-x^2)^n}=-frac{1}{2x(1-n)(a^2-x^2)^{n-1}}-frac{1}{2(n-1)}intfrac{1}{x^2(a^2-x^2)^{n-1}}dx$$
Don't know how to proceed from here, any help?
calculus integration reduction-formula
calculus integration reduction-formula
edited Jan 5 at 22:21
Anson Pang
asked Dec 29 '18 at 17:32
Anson PangAnson Pang
9216
9216
$begingroup$
Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 17:49
add a comment |
$begingroup$
Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 17:49
$begingroup$
Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 17:49
$begingroup$
Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 17:49
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Differentiation helps us to reduce calculation
$$dfrac{d{x(a^2-x^2)^n}}{dx}a$$
$$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$
$$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$
Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$
Set $n=-m$
$endgroup$
add a comment |
$begingroup$
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
For your integral, set $a=-1$ and replace $b$ with $b^2$
$endgroup$
$begingroup$
But is it possible to do it through an independent IBP process, an not from a different reduction formula?
$endgroup$
– Anson Pang
Jan 3 at 3:15
$begingroup$
@AnsonPang yes, but the process would be exactly the same.
$endgroup$
– clathratus
Jan 3 at 3:18
$begingroup$
Oh, I see, thanks.
$endgroup$
– Anson Pang
Jan 3 at 3:19
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056064%2fproving-reduction-formula-using-integration-by-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Differentiation helps us to reduce calculation
$$dfrac{d{x(a^2-x^2)^n}}{dx}a$$
$$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$
$$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$
Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$
Set $n=-m$
$endgroup$
add a comment |
$begingroup$
Differentiation helps us to reduce calculation
$$dfrac{d{x(a^2-x^2)^n}}{dx}a$$
$$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$
$$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$
Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$
Set $n=-m$
$endgroup$
add a comment |
$begingroup$
Differentiation helps us to reduce calculation
$$dfrac{d{x(a^2-x^2)^n}}{dx}a$$
$$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$
$$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$
Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$
Set $n=-m$
$endgroup$
Differentiation helps us to reduce calculation
$$dfrac{d{x(a^2-x^2)^n}}{dx}a$$
$$=(a^2-x^2)^n-2nx^2(a^2-x^2)^{n-1}=(a^2-x^2)^n+2n(a^2-x^2-a^2)(a^2-x^2)^{n-1}$$
$$impliesdfrac{d{x(a^2-x^2)^n}}{dx}=(1+2n)(a^2-x^2)^n-2na^2(a^2-x^2)^{n-1}$$
Integrating both sides, $$x(a^2-x^2)^n=(2n+1)I_n-2na^2I_{n-1}$$
Set $n=-m$
answered Dec 29 '18 at 17:46
lab bhattacharjeelab bhattacharjee
229k15159279
229k15159279
add a comment |
add a comment |
$begingroup$
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
For your integral, set $a=-1$ and replace $b$ with $b^2$
$endgroup$
$begingroup$
But is it possible to do it through an independent IBP process, an not from a different reduction formula?
$endgroup$
– Anson Pang
Jan 3 at 3:15
$begingroup$
@AnsonPang yes, but the process would be exactly the same.
$endgroup$
– clathratus
Jan 3 at 3:18
$begingroup$
Oh, I see, thanks.
$endgroup$
– Anson Pang
Jan 3 at 3:19
add a comment |
$begingroup$
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
For your integral, set $a=-1$ and replace $b$ with $b^2$
$endgroup$
$begingroup$
But is it possible to do it through an independent IBP process, an not from a different reduction formula?
$endgroup$
– Anson Pang
Jan 3 at 3:15
$begingroup$
@AnsonPang yes, but the process would be exactly the same.
$endgroup$
– clathratus
Jan 3 at 3:18
$begingroup$
Oh, I see, thanks.
$endgroup$
– Anson Pang
Jan 3 at 3:19
add a comment |
$begingroup$
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
For your integral, set $a=-1$ and replace $b$ with $b^2$
$endgroup$
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
For your integral, set $a=-1$ and replace $b$ with $b^2$
answered Dec 30 '18 at 1:35
clathratusclathratus
5,1691439
5,1691439
$begingroup$
But is it possible to do it through an independent IBP process, an not from a different reduction formula?
$endgroup$
– Anson Pang
Jan 3 at 3:15
$begingroup$
@AnsonPang yes, but the process would be exactly the same.
$endgroup$
– clathratus
Jan 3 at 3:18
$begingroup$
Oh, I see, thanks.
$endgroup$
– Anson Pang
Jan 3 at 3:19
add a comment |
$begingroup$
But is it possible to do it through an independent IBP process, an not from a different reduction formula?
$endgroup$
– Anson Pang
Jan 3 at 3:15
$begingroup$
@AnsonPang yes, but the process would be exactly the same.
$endgroup$
– clathratus
Jan 3 at 3:18
$begingroup$
Oh, I see, thanks.
$endgroup$
– Anson Pang
Jan 3 at 3:19
$begingroup$
But is it possible to do it through an independent IBP process, an not from a different reduction formula?
$endgroup$
– Anson Pang
Jan 3 at 3:15
$begingroup$
But is it possible to do it through an independent IBP process, an not from a different reduction formula?
$endgroup$
– Anson Pang
Jan 3 at 3:15
$begingroup$
@AnsonPang yes, but the process would be exactly the same.
$endgroup$
– clathratus
Jan 3 at 3:18
$begingroup$
@AnsonPang yes, but the process would be exactly the same.
$endgroup$
– clathratus
Jan 3 at 3:18
$begingroup$
Oh, I see, thanks.
$endgroup$
– Anson Pang
Jan 3 at 3:19
$begingroup$
Oh, I see, thanks.
$endgroup$
– Anson Pang
Jan 3 at 3:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056064%2fproving-reduction-formula-using-integration-by-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Related : math.stackexchange.com/questions/2998151/… and math.stackexchange.com/questions/2964330/…
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 17:49