The answer of a series with complex variable analysis
$begingroup$
We have a series as
$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$
How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?
$U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$
sequences-and-series complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
We have a series as
$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$
How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?
$U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$
sequences-and-series complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
We have a series as
$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$
How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?
$U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$
sequences-and-series complex-analysis complex-numbers
$endgroup$
We have a series as
$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$
How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?
$U=frac{sin(frac{n+1}{2}alpha)}{sin(frac{1}{2}alpha)}cos(theta+frac{1}{2}nalpha)$
sequences-and-series complex-analysis complex-numbers
sequences-and-series complex-analysis complex-numbers
edited 37 mins ago
John Doe
12.1k11340
12.1k11340
asked 1 hour ago
UnbelievableUnbelievable
1163
1163
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2fthe-answer-of-a-series-with-complex-variable-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$
$endgroup$
add a comment |
$begingroup$
Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$
$endgroup$
add a comment |
$begingroup$
Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$
$endgroup$
Use the fact that this is almost a geometric series. $$begin{align}U&=mathfrak R[e^{itheta} +e^{itheta+ialpha}+cdots+e^{itheta+inalpha}]\&=mathfrak Rleft[e^{itheta}sum_{j=0}^n e^{ijalpha}right]\&=mathfrak Rleft[e^{itheta}frac{1-e^{i(n+1)alpha}}{1-e^{ialpha}}right]\&=mathfrak Rleft[e^{itheta}frac{e^{-i(n+1)alpha/2}-e^{i(n+1)alpha/2}}{e^{-ialpha/2}-e^{ialpha/2}}e^{inalpha/2}right]\&=mathfrak Rleft[e^{i(nalpha/2+theta)}frac{sin[(n+1)alpha/2]}{sin[alpha/2]}right]\&=cos(theta+tfrac{nalpha}{2})frac{sinleft(frac12(n+1)alpharight)}{sinleft(frac12alpharight)}end{align}$$
answered 39 mins ago
dialogdialog
997
997
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2fthe-answer-of-a-series-with-complex-variable-analysis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown