Defined row operations for making a matrix ,containing varibel coefficients, into RREF












0












$begingroup$


I am trying to solve for the inverse for a given $3x3$ matrix. The matrix looks like this:
begin{pmatrix}1&0&1\ :a&0&1\ :1&a&0end{pmatrix}
I have tried solving it through carrying out row operations on the matrix above whilest in parallel carrying out the same operations on a $3x3$ Identity matrix.
I am worried that I might be preforming "undefined" or "non-approved" row operations on $A$ and that it, is the cause of the incorrect result. What i got so far looks like this:



begin{pmatrix}1&0&1\ :::::a&0&1\ :::::1&a&0end{pmatrix} $R_2to R_2 -aR_1$



$R_3to R_3-R_1$
begin{pmatrix}1&0&1\ ::::::0&0&1-a\ ::::::0&a&-1end{pmatrix}



Assuming $aneq 1$



Switch $R_2leftrightarrow R_3$



begin{pmatrix}1&0&1\ :::::0&a&-1\ :::::0&0&1-aend{pmatrix}



$R_3to frac{1}{1-a}R_3$begin{pmatrix}1&0&1\ ::::::0&a&-1\ ::::::0&0&1end{pmatrix}



$R_2to R_2+R_3$



$R_1to R_1-R_3$



begin{pmatrix}1&0&0\ :::::::0&a&0\ :::::::0&0&1end{pmatrix}
$R_2to R_2cdot(1/a)$
begin{pmatrix}1&0&0\ :::::::0&1&0\ :::::::0&0&1end{pmatrix}



This it what i am getting, if i do the same elementry row operations in the same sequence to the Identity matrix i get an incorrect result. What am i doing wrong?
(Sorry about the messy notation, first time poster)
Kind regards and many thanks!










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I am trying to solve for the inverse for a given $3x3$ matrix. The matrix looks like this:
    begin{pmatrix}1&0&1\ :a&0&1\ :1&a&0end{pmatrix}
    I have tried solving it through carrying out row operations on the matrix above whilest in parallel carrying out the same operations on a $3x3$ Identity matrix.
    I am worried that I might be preforming "undefined" or "non-approved" row operations on $A$ and that it, is the cause of the incorrect result. What i got so far looks like this:



    begin{pmatrix}1&0&1\ :::::a&0&1\ :::::1&a&0end{pmatrix} $R_2to R_2 -aR_1$



    $R_3to R_3-R_1$
    begin{pmatrix}1&0&1\ ::::::0&0&1-a\ ::::::0&a&-1end{pmatrix}



    Assuming $aneq 1$



    Switch $R_2leftrightarrow R_3$



    begin{pmatrix}1&0&1\ :::::0&a&-1\ :::::0&0&1-aend{pmatrix}



    $R_3to frac{1}{1-a}R_3$begin{pmatrix}1&0&1\ ::::::0&a&-1\ ::::::0&0&1end{pmatrix}



    $R_2to R_2+R_3$



    $R_1to R_1-R_3$



    begin{pmatrix}1&0&0\ :::::::0&a&0\ :::::::0&0&1end{pmatrix}
    $R_2to R_2cdot(1/a)$
    begin{pmatrix}1&0&0\ :::::::0&1&0\ :::::::0&0&1end{pmatrix}



    This it what i am getting, if i do the same elementry row operations in the same sequence to the Identity matrix i get an incorrect result. What am i doing wrong?
    (Sorry about the messy notation, first time poster)
    Kind regards and many thanks!










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I am trying to solve for the inverse for a given $3x3$ matrix. The matrix looks like this:
      begin{pmatrix}1&0&1\ :a&0&1\ :1&a&0end{pmatrix}
      I have tried solving it through carrying out row operations on the matrix above whilest in parallel carrying out the same operations on a $3x3$ Identity matrix.
      I am worried that I might be preforming "undefined" or "non-approved" row operations on $A$ and that it, is the cause of the incorrect result. What i got so far looks like this:



      begin{pmatrix}1&0&1\ :::::a&0&1\ :::::1&a&0end{pmatrix} $R_2to R_2 -aR_1$



      $R_3to R_3-R_1$
      begin{pmatrix}1&0&1\ ::::::0&0&1-a\ ::::::0&a&-1end{pmatrix}



      Assuming $aneq 1$



      Switch $R_2leftrightarrow R_3$



      begin{pmatrix}1&0&1\ :::::0&a&-1\ :::::0&0&1-aend{pmatrix}



      $R_3to frac{1}{1-a}R_3$begin{pmatrix}1&0&1\ ::::::0&a&-1\ ::::::0&0&1end{pmatrix}



      $R_2to R_2+R_3$



      $R_1to R_1-R_3$



      begin{pmatrix}1&0&0\ :::::::0&a&0\ :::::::0&0&1end{pmatrix}
      $R_2to R_2cdot(1/a)$
      begin{pmatrix}1&0&0\ :::::::0&1&0\ :::::::0&0&1end{pmatrix}



      This it what i am getting, if i do the same elementry row operations in the same sequence to the Identity matrix i get an incorrect result. What am i doing wrong?
      (Sorry about the messy notation, first time poster)
      Kind regards and many thanks!










      share|cite|improve this question











      $endgroup$




      I am trying to solve for the inverse for a given $3x3$ matrix. The matrix looks like this:
      begin{pmatrix}1&0&1\ :a&0&1\ :1&a&0end{pmatrix}
      I have tried solving it through carrying out row operations on the matrix above whilest in parallel carrying out the same operations on a $3x3$ Identity matrix.
      I am worried that I might be preforming "undefined" or "non-approved" row operations on $A$ and that it, is the cause of the incorrect result. What i got so far looks like this:



      begin{pmatrix}1&0&1\ :::::a&0&1\ :::::1&a&0end{pmatrix} $R_2to R_2 -aR_1$



      $R_3to R_3-R_1$
      begin{pmatrix}1&0&1\ ::::::0&0&1-a\ ::::::0&a&-1end{pmatrix}



      Assuming $aneq 1$



      Switch $R_2leftrightarrow R_3$



      begin{pmatrix}1&0&1\ :::::0&a&-1\ :::::0&0&1-aend{pmatrix}



      $R_3to frac{1}{1-a}R_3$begin{pmatrix}1&0&1\ ::::::0&a&-1\ ::::::0&0&1end{pmatrix}



      $R_2to R_2+R_3$



      $R_1to R_1-R_3$



      begin{pmatrix}1&0&0\ :::::::0&a&0\ :::::::0&0&1end{pmatrix}
      $R_2to R_2cdot(1/a)$
      begin{pmatrix}1&0&0\ :::::::0&1&0\ :::::::0&0&1end{pmatrix}



      This it what i am getting, if i do the same elementry row operations in the same sequence to the Identity matrix i get an incorrect result. What am i doing wrong?
      (Sorry about the messy notation, first time poster)
      Kind regards and many thanks!







      linear-algebra matrices






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 30 '18 at 17:11









      Thomas Shelby

      2,199220




      2,199220










      asked Nov 30 '18 at 16:43









      Student123451Student123451

      1




      1






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          $a≠0,1$ or the matrix will be singular. The row transformations look okay. The inverse comes out to be $begin{pmatrix}frac1{1-a}&frac1{a-1}&0\ :frac1{a(a-1)}&frac1{a(1-a)}&frac1a\ :frac a{a-1}&frac1{1-a}&0end{pmatrix}$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020302%2fdefined-row-operations-for-making-a-matrix-containing-varibel-coefficients-int%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            $a≠0,1$ or the matrix will be singular. The row transformations look okay. The inverse comes out to be $begin{pmatrix}frac1{1-a}&frac1{a-1}&0\ :frac1{a(a-1)}&frac1{a(1-a)}&frac1a\ :frac a{a-1}&frac1{1-a}&0end{pmatrix}$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              $a≠0,1$ or the matrix will be singular. The row transformations look okay. The inverse comes out to be $begin{pmatrix}frac1{1-a}&frac1{a-1}&0\ :frac1{a(a-1)}&frac1{a(1-a)}&frac1a\ :frac a{a-1}&frac1{1-a}&0end{pmatrix}$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                $a≠0,1$ or the matrix will be singular. The row transformations look okay. The inverse comes out to be $begin{pmatrix}frac1{1-a}&frac1{a-1}&0\ :frac1{a(a-1)}&frac1{a(1-a)}&frac1a\ :frac a{a-1}&frac1{1-a}&0end{pmatrix}$.






                share|cite|improve this answer









                $endgroup$



                $a≠0,1$ or the matrix will be singular. The row transformations look okay. The inverse comes out to be $begin{pmatrix}frac1{1-a}&frac1{a-1}&0\ :frac1{a(a-1)}&frac1{a(1-a)}&frac1a\ :frac a{a-1}&frac1{1-a}&0end{pmatrix}$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 30 '18 at 17:17









                Shubham JohriShubham Johri

                4,666717




                4,666717






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020302%2fdefined-row-operations-for-making-a-matrix-containing-varibel-coefficients-int%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten