Eigenvectors of the following diagonal matrix












0












$begingroup$


Let $x = frac{2 i pi k}{n}$ where $1 leq k leq frac{n}{2} - 1$, where $n = 2k$ even. $$ A = begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix}$$ I'm trying to find the eigenvectors of of this matrix. The eigenvalues are clearly $e^{ix}$ and $e^{-ix}$. So, let $ begin{bmatrix} a \ b end{bmatrix}$ denote the eigenvector. Then $$ begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix} begin{bmatrix} a \ b end{bmatrix} = e^{ix} begin{bmatrix} a \ b end{bmatrix}$$ So, we get that $a = 1$ from the first equation. Solving for $b$ is my problem. I get $e^{-ix}b = e^{ix}b$, so $b = e^{2ix}b$, then $b(1 - e^{2ix}) = 0$, but then I get stuck. The eigenvalues are supposedly $$begin{bmatrix} 1 \ i end{bmatrix}, begin{bmatrix} 1 \ -i end{bmatrix}$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    $[1, 0], [0, 1]$ always work for diagonal matrices.
    $endgroup$
    – xbh
    Dec 1 '18 at 15:01










  • $begingroup$
    $i$ appears twice and your second equation is wrong. Review what you wrote.
    $endgroup$
    – Yves Daoust
    Dec 1 '18 at 15:02












  • $begingroup$
    And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
    $endgroup$
    – Yves Daoust
    Dec 1 '18 at 15:07
















0












$begingroup$


Let $x = frac{2 i pi k}{n}$ where $1 leq k leq frac{n}{2} - 1$, where $n = 2k$ even. $$ A = begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix}$$ I'm trying to find the eigenvectors of of this matrix. The eigenvalues are clearly $e^{ix}$ and $e^{-ix}$. So, let $ begin{bmatrix} a \ b end{bmatrix}$ denote the eigenvector. Then $$ begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix} begin{bmatrix} a \ b end{bmatrix} = e^{ix} begin{bmatrix} a \ b end{bmatrix}$$ So, we get that $a = 1$ from the first equation. Solving for $b$ is my problem. I get $e^{-ix}b = e^{ix}b$, so $b = e^{2ix}b$, then $b(1 - e^{2ix}) = 0$, but then I get stuck. The eigenvalues are supposedly $$begin{bmatrix} 1 \ i end{bmatrix}, begin{bmatrix} 1 \ -i end{bmatrix}$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    $[1, 0], [0, 1]$ always work for diagonal matrices.
    $endgroup$
    – xbh
    Dec 1 '18 at 15:01










  • $begingroup$
    $i$ appears twice and your second equation is wrong. Review what you wrote.
    $endgroup$
    – Yves Daoust
    Dec 1 '18 at 15:02












  • $begingroup$
    And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
    $endgroup$
    – Yves Daoust
    Dec 1 '18 at 15:07














0












0








0





$begingroup$


Let $x = frac{2 i pi k}{n}$ where $1 leq k leq frac{n}{2} - 1$, where $n = 2k$ even. $$ A = begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix}$$ I'm trying to find the eigenvectors of of this matrix. The eigenvalues are clearly $e^{ix}$ and $e^{-ix}$. So, let $ begin{bmatrix} a \ b end{bmatrix}$ denote the eigenvector. Then $$ begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix} begin{bmatrix} a \ b end{bmatrix} = e^{ix} begin{bmatrix} a \ b end{bmatrix}$$ So, we get that $a = 1$ from the first equation. Solving for $b$ is my problem. I get $e^{-ix}b = e^{ix}b$, so $b = e^{2ix}b$, then $b(1 - e^{2ix}) = 0$, but then I get stuck. The eigenvalues are supposedly $$begin{bmatrix} 1 \ i end{bmatrix}, begin{bmatrix} 1 \ -i end{bmatrix}$$










share|cite|improve this question









$endgroup$




Let $x = frac{2 i pi k}{n}$ where $1 leq k leq frac{n}{2} - 1$, where $n = 2k$ even. $$ A = begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix}$$ I'm trying to find the eigenvectors of of this matrix. The eigenvalues are clearly $e^{ix}$ and $e^{-ix}$. So, let $ begin{bmatrix} a \ b end{bmatrix}$ denote the eigenvector. Then $$ begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix} begin{bmatrix} a \ b end{bmatrix} = e^{ix} begin{bmatrix} a \ b end{bmatrix}$$ So, we get that $a = 1$ from the first equation. Solving for $b$ is my problem. I get $e^{-ix}b = e^{ix}b$, so $b = e^{2ix}b$, then $b(1 - e^{2ix}) = 0$, but then I get stuck. The eigenvalues are supposedly $$begin{bmatrix} 1 \ i end{bmatrix}, begin{bmatrix} 1 \ -i end{bmatrix}$$







linear-algebra abstract-algebra eigenvalues-eigenvectors






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 1 '18 at 14:51









the manthe man

711715




711715












  • $begingroup$
    $[1, 0], [0, 1]$ always work for diagonal matrices.
    $endgroup$
    – xbh
    Dec 1 '18 at 15:01










  • $begingroup$
    $i$ appears twice and your second equation is wrong. Review what you wrote.
    $endgroup$
    – Yves Daoust
    Dec 1 '18 at 15:02












  • $begingroup$
    And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
    $endgroup$
    – Yves Daoust
    Dec 1 '18 at 15:07


















  • $begingroup$
    $[1, 0], [0, 1]$ always work for diagonal matrices.
    $endgroup$
    – xbh
    Dec 1 '18 at 15:01










  • $begingroup$
    $i$ appears twice and your second equation is wrong. Review what you wrote.
    $endgroup$
    – Yves Daoust
    Dec 1 '18 at 15:02












  • $begingroup$
    And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
    $endgroup$
    – Yves Daoust
    Dec 1 '18 at 15:07
















$begingroup$
$[1, 0], [0, 1]$ always work for diagonal matrices.
$endgroup$
– xbh
Dec 1 '18 at 15:01




$begingroup$
$[1, 0], [0, 1]$ always work for diagonal matrices.
$endgroup$
– xbh
Dec 1 '18 at 15:01












$begingroup$
$i$ appears twice and your second equation is wrong. Review what you wrote.
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:02






$begingroup$
$i$ appears twice and your second equation is wrong. Review what you wrote.
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:02














$begingroup$
And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:07




$begingroup$
And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:07










2 Answers
2






active

oldest

votes


















0












$begingroup$

Hint:



The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    To find the first Eigenvector, you have to solve



    $$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$



    This is immediate.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021436%2feigenvectors-of-the-following-diagonal-matrix%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      Hint:



      The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        Hint:



        The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          Hint:



          The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.






          share|cite|improve this answer









          $endgroup$



          Hint:



          The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 1 '18 at 15:01









          BernardBernard

          119k639112




          119k639112























              0












              $begingroup$

              To find the first Eigenvector, you have to solve



              $$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$



              This is immediate.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                To find the first Eigenvector, you have to solve



                $$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$



                This is immediate.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  To find the first Eigenvector, you have to solve



                  $$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$



                  This is immediate.






                  share|cite|improve this answer









                  $endgroup$



                  To find the first Eigenvector, you have to solve



                  $$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$



                  This is immediate.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 1 '18 at 15:05









                  Yves DaoustYves Daoust

                  125k671222




                  125k671222






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021436%2feigenvectors-of-the-following-diagonal-matrix%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten