Eigenvectors of the following diagonal matrix
$begingroup$
Let $x = frac{2 i pi k}{n}$ where $1 leq k leq frac{n}{2} - 1$, where $n = 2k$ even. $$ A = begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix}$$ I'm trying to find the eigenvectors of of this matrix. The eigenvalues are clearly $e^{ix}$ and $e^{-ix}$. So, let $ begin{bmatrix} a \ b end{bmatrix}$ denote the eigenvector. Then $$ begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix} begin{bmatrix} a \ b end{bmatrix} = e^{ix} begin{bmatrix} a \ b end{bmatrix}$$ So, we get that $a = 1$ from the first equation. Solving for $b$ is my problem. I get $e^{-ix}b = e^{ix}b$, so $b = e^{2ix}b$, then $b(1 - e^{2ix}) = 0$, but then I get stuck. The eigenvalues are supposedly $$begin{bmatrix} 1 \ i end{bmatrix}, begin{bmatrix} 1 \ -i end{bmatrix}$$
linear-algebra abstract-algebra eigenvalues-eigenvectors
$endgroup$
add a comment |
$begingroup$
Let $x = frac{2 i pi k}{n}$ where $1 leq k leq frac{n}{2} - 1$, where $n = 2k$ even. $$ A = begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix}$$ I'm trying to find the eigenvectors of of this matrix. The eigenvalues are clearly $e^{ix}$ and $e^{-ix}$. So, let $ begin{bmatrix} a \ b end{bmatrix}$ denote the eigenvector. Then $$ begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix} begin{bmatrix} a \ b end{bmatrix} = e^{ix} begin{bmatrix} a \ b end{bmatrix}$$ So, we get that $a = 1$ from the first equation. Solving for $b$ is my problem. I get $e^{-ix}b = e^{ix}b$, so $b = e^{2ix}b$, then $b(1 - e^{2ix}) = 0$, but then I get stuck. The eigenvalues are supposedly $$begin{bmatrix} 1 \ i end{bmatrix}, begin{bmatrix} 1 \ -i end{bmatrix}$$
linear-algebra abstract-algebra eigenvalues-eigenvectors
$endgroup$
$begingroup$
$[1, 0], [0, 1]$ always work for diagonal matrices.
$endgroup$
– xbh
Dec 1 '18 at 15:01
$begingroup$
$i$ appears twice and your second equation is wrong. Review what you wrote.
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:02
$begingroup$
And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:07
add a comment |
$begingroup$
Let $x = frac{2 i pi k}{n}$ where $1 leq k leq frac{n}{2} - 1$, where $n = 2k$ even. $$ A = begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix}$$ I'm trying to find the eigenvectors of of this matrix. The eigenvalues are clearly $e^{ix}$ and $e^{-ix}$. So, let $ begin{bmatrix} a \ b end{bmatrix}$ denote the eigenvector. Then $$ begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix} begin{bmatrix} a \ b end{bmatrix} = e^{ix} begin{bmatrix} a \ b end{bmatrix}$$ So, we get that $a = 1$ from the first equation. Solving for $b$ is my problem. I get $e^{-ix}b = e^{ix}b$, so $b = e^{2ix}b$, then $b(1 - e^{2ix}) = 0$, but then I get stuck. The eigenvalues are supposedly $$begin{bmatrix} 1 \ i end{bmatrix}, begin{bmatrix} 1 \ -i end{bmatrix}$$
linear-algebra abstract-algebra eigenvalues-eigenvectors
$endgroup$
Let $x = frac{2 i pi k}{n}$ where $1 leq k leq frac{n}{2} - 1$, where $n = 2k$ even. $$ A = begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix}$$ I'm trying to find the eigenvectors of of this matrix. The eigenvalues are clearly $e^{ix}$ and $e^{-ix}$. So, let $ begin{bmatrix} a \ b end{bmatrix}$ denote the eigenvector. Then $$ begin{bmatrix} e^{ix} & 0 \ 0 & e^{-ix} end{bmatrix} begin{bmatrix} a \ b end{bmatrix} = e^{ix} begin{bmatrix} a \ b end{bmatrix}$$ So, we get that $a = 1$ from the first equation. Solving for $b$ is my problem. I get $e^{-ix}b = e^{ix}b$, so $b = e^{2ix}b$, then $b(1 - e^{2ix}) = 0$, but then I get stuck. The eigenvalues are supposedly $$begin{bmatrix} 1 \ i end{bmatrix}, begin{bmatrix} 1 \ -i end{bmatrix}$$
linear-algebra abstract-algebra eigenvalues-eigenvectors
linear-algebra abstract-algebra eigenvalues-eigenvectors
asked Dec 1 '18 at 14:51
the manthe man
711715
711715
$begingroup$
$[1, 0], [0, 1]$ always work for diagonal matrices.
$endgroup$
– xbh
Dec 1 '18 at 15:01
$begingroup$
$i$ appears twice and your second equation is wrong. Review what you wrote.
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:02
$begingroup$
And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:07
add a comment |
$begingroup$
$[1, 0], [0, 1]$ always work for diagonal matrices.
$endgroup$
– xbh
Dec 1 '18 at 15:01
$begingroup$
$i$ appears twice and your second equation is wrong. Review what you wrote.
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:02
$begingroup$
And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:07
$begingroup$
$[1, 0], [0, 1]$ always work for diagonal matrices.
$endgroup$
– xbh
Dec 1 '18 at 15:01
$begingroup$
$[1, 0], [0, 1]$ always work for diagonal matrices.
$endgroup$
– xbh
Dec 1 '18 at 15:01
$begingroup$
$i$ appears twice and your second equation is wrong. Review what you wrote.
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:02
$begingroup$
$i$ appears twice and your second equation is wrong. Review what you wrote.
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:02
$begingroup$
And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:07
$begingroup$
And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:07
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:
The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.
$endgroup$
add a comment |
$begingroup$
To find the first Eigenvector, you have to solve
$$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$
This is immediate.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021436%2feigenvectors-of-the-following-diagonal-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.
$endgroup$
add a comment |
$begingroup$
Hint:
The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.
$endgroup$
add a comment |
$begingroup$
Hint:
The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.
$endgroup$
Hint:
The eigenvalues are $mathrm e^{ix}$ and $mathrm e^{-ix}$. This requires the eigenvectors have each one coordinate equal to $0$.
answered Dec 1 '18 at 15:01
BernardBernard
119k639112
119k639112
add a comment |
add a comment |
$begingroup$
To find the first Eigenvector, you have to solve
$$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$
This is immediate.
$endgroup$
add a comment |
$begingroup$
To find the first Eigenvector, you have to solve
$$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$
This is immediate.
$endgroup$
add a comment |
$begingroup$
To find the first Eigenvector, you have to solve
$$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$
This is immediate.
$endgroup$
To find the first Eigenvector, you have to solve
$$begin{bmatrix}e^{ix}-e^{ix}&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0&0\0&e^{-ix}-e^{ix}end{bmatrix}begin{bmatrix}a\bend{bmatrix}=begin{bmatrix}0\0end{bmatrix}.$$
This is immediate.
answered Dec 1 '18 at 15:05
Yves DaoustYves Daoust
125k671222
125k671222
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021436%2feigenvectors-of-the-following-diagonal-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$[1, 0], [0, 1]$ always work for diagonal matrices.
$endgroup$
– xbh
Dec 1 '18 at 15:01
$begingroup$
$i$ appears twice and your second equation is wrong. Review what you wrote.
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:02
$begingroup$
And I don't think the problem statement is the right one. Aren't you solving an ODE system ?
$endgroup$
– Yves Daoust
Dec 1 '18 at 15:07