$operatorname{Var}[sum_{i=1}^n (X_i-mu_0)^2]=operatorname{Var}[ sum_{i=1}^n(X_i-overline{X})^2]$?












1












$begingroup$


Consider independent $X_1,ldots, X_nsimmathcal{N}(mu_0,sigma^2)$ with a known $mu_0inmathbb{R}$ and unknown $sigma^2in(0,infty)$. I already know that



$$DeclareMathOperator{Var}{Var}frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2$$



is variance minimising and that



$$EBig[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2Big]=EBig[frac{1}{n-1} sum_{i=1}^n(X_i-overline{X})^2Big]=sigma^2$$



What I want to show is that



$$frac{1}{n^2}Var[sum_{i=1}^n (X_i-mu_0)^2]=Var[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2]<Var[frac{1}{n-1}sum_{i=1}^n(X_i-overline{X})^2]=frac{1}{(n-1)^2}Var[sum_{i=1}^n(X_i-overline{X})^2]$$



Since the first moments are the same it would be enough, to know, that



$$EBig[Big(sum_{i=1}^n (X_i-mu_0)^2Big)^2Big]=EBig[Big(sum_{i=1}^n(X_i-overline{X})^2Big)^2Big]$$



Is this true? There might be an easy argument, but I do not find it.



Thanks in advance!










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Consider independent $X_1,ldots, X_nsimmathcal{N}(mu_0,sigma^2)$ with a known $mu_0inmathbb{R}$ and unknown $sigma^2in(0,infty)$. I already know that



    $$DeclareMathOperator{Var}{Var}frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2$$



    is variance minimising and that



    $$EBig[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2Big]=EBig[frac{1}{n-1} sum_{i=1}^n(X_i-overline{X})^2Big]=sigma^2$$



    What I want to show is that



    $$frac{1}{n^2}Var[sum_{i=1}^n (X_i-mu_0)^2]=Var[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2]<Var[frac{1}{n-1}sum_{i=1}^n(X_i-overline{X})^2]=frac{1}{(n-1)^2}Var[sum_{i=1}^n(X_i-overline{X})^2]$$



    Since the first moments are the same it would be enough, to know, that



    $$EBig[Big(sum_{i=1}^n (X_i-mu_0)^2Big)^2Big]=EBig[Big(sum_{i=1}^n(X_i-overline{X})^2Big)^2Big]$$



    Is this true? There might be an easy argument, but I do not find it.



    Thanks in advance!










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Consider independent $X_1,ldots, X_nsimmathcal{N}(mu_0,sigma^2)$ with a known $mu_0inmathbb{R}$ and unknown $sigma^2in(0,infty)$. I already know that



      $$DeclareMathOperator{Var}{Var}frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2$$



      is variance minimising and that



      $$EBig[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2Big]=EBig[frac{1}{n-1} sum_{i=1}^n(X_i-overline{X})^2Big]=sigma^2$$



      What I want to show is that



      $$frac{1}{n^2}Var[sum_{i=1}^n (X_i-mu_0)^2]=Var[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2]<Var[frac{1}{n-1}sum_{i=1}^n(X_i-overline{X})^2]=frac{1}{(n-1)^2}Var[sum_{i=1}^n(X_i-overline{X})^2]$$



      Since the first moments are the same it would be enough, to know, that



      $$EBig[Big(sum_{i=1}^n (X_i-mu_0)^2Big)^2Big]=EBig[Big(sum_{i=1}^n(X_i-overline{X})^2Big)^2Big]$$



      Is this true? There might be an easy argument, but I do not find it.



      Thanks in advance!










      share|cite|improve this question











      $endgroup$




      Consider independent $X_1,ldots, X_nsimmathcal{N}(mu_0,sigma^2)$ with a known $mu_0inmathbb{R}$ and unknown $sigma^2in(0,infty)$. I already know that



      $$DeclareMathOperator{Var}{Var}frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2$$



      is variance minimising and that



      $$EBig[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2Big]=EBig[frac{1}{n-1} sum_{i=1}^n(X_i-overline{X})^2Big]=sigma^2$$



      What I want to show is that



      $$frac{1}{n^2}Var[sum_{i=1}^n (X_i-mu_0)^2]=Var[frac{1}{n}sum_{i=1}^n (X_i-mu_0)^2]<Var[frac{1}{n-1}sum_{i=1}^n(X_i-overline{X})^2]=frac{1}{(n-1)^2}Var[sum_{i=1}^n(X_i-overline{X})^2]$$



      Since the first moments are the same it would be enough, to know, that



      $$EBig[Big(sum_{i=1}^n (X_i-mu_0)^2Big)^2Big]=EBig[Big(sum_{i=1}^n(X_i-overline{X})^2Big)^2Big]$$



      Is this true? There might be an easy argument, but I do not find it.



      Thanks in advance!







      probability probability-theory statistics statistical-inference descriptive-statistics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 1 '18 at 14:39









      J.G.

      24k22539




      24k22539










      asked Dec 1 '18 at 13:59









      user408858user408858

      470110




      470110






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
          $$ DeclareMathOperator{Var}{Var}
          frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
          $$

          and
          $$
          Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:10










          • $begingroup$
            @user408858 Right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:10










          • $begingroup$
            So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:13












          • $begingroup$
            Yup, that is right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:18











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021375%2foperatornamevar-sum-i-1n-x-i-mu-02-operatornamevar-sum-i-1n%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
          $$ DeclareMathOperator{Var}{Var}
          frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
          $$

          and
          $$
          Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:10










          • $begingroup$
            @user408858 Right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:10










          • $begingroup$
            So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:13












          • $begingroup$
            Yup, that is right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:18
















          1












          $begingroup$

          Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
          $$ DeclareMathOperator{Var}{Var}
          frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
          $$

          and
          $$
          Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:10










          • $begingroup$
            @user408858 Right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:10










          • $begingroup$
            So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:13












          • $begingroup$
            Yup, that is right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:18














          1












          1








          1





          $begingroup$

          Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
          $$ DeclareMathOperator{Var}{Var}
          frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
          $$

          and
          $$
          Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
          $$






          share|cite|improve this answer











          $endgroup$



          Recall that if $X_1,X_2,...,X_n$ iid $N(mu, sigma ^ 2)$, then
          $$ DeclareMathOperator{Var}{Var}
          frac{sum ( X_i - mu ) ^ 2}{ sigma ^ 2} sim chi^2_n, quad frac{sum ( X_i - bar{X}_n ) ^ 2}{ sigma ^ 2} sim chi^2_{n-1},
          $$

          and
          $$
          Var(chi^2_n)=2n, quad Var(chi^2_{n-1})=2(n-1).
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 1 '18 at 14:30









          Bernard

          119k639112




          119k639112










          answered Dec 1 '18 at 14:08









          V. VancakV. Vancak

          10.9k2926




          10.9k2926












          • $begingroup$
            Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:10










          • $begingroup$
            @user408858 Right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:10










          • $begingroup$
            So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:13












          • $begingroup$
            Yup, that is right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:18


















          • $begingroup$
            Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:10










          • $begingroup$
            @user408858 Right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:10










          • $begingroup$
            So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
            $endgroup$
            – user408858
            Dec 1 '18 at 14:13












          • $begingroup$
            Yup, that is right
            $endgroup$
            – V. Vancak
            Dec 1 '18 at 14:18
















          $begingroup$
          Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
          $endgroup$
          – user408858
          Dec 1 '18 at 14:10




          $begingroup$
          Where $overline{X}_n=frac{1}{n}sum_{i=1}^nX_i$?
          $endgroup$
          – user408858
          Dec 1 '18 at 14:10












          $begingroup$
          @user408858 Right
          $endgroup$
          – V. Vancak
          Dec 1 '18 at 14:10




          $begingroup$
          @user408858 Right
          $endgroup$
          – V. Vancak
          Dec 1 '18 at 14:10












          $begingroup$
          So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
          $endgroup$
          – user408858
          Dec 1 '18 at 14:13






          $begingroup$
          So I get $Var[sum_{i=1}^n (X_i-mu_0)^2]= 2nsigma^4$ and $Var[ sum_{i=1}^n(X_i-overline{X})^2]=2(n-1)sigma^4$, right?
          $endgroup$
          – user408858
          Dec 1 '18 at 14:13














          $begingroup$
          Yup, that is right
          $endgroup$
          – V. Vancak
          Dec 1 '18 at 14:18




          $begingroup$
          Yup, that is right
          $endgroup$
          – V. Vancak
          Dec 1 '18 at 14:18


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021375%2foperatornamevar-sum-i-1n-x-i-mu-02-operatornamevar-sum-i-1n%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten