Where are the extra coins?
$begingroup$
I am a manager of a coin casting foundry. We produce perfectly round coins with some (fixed) thickness and a diameter of exactly 1 inch. The working room is well-secured such that if any coin tries to leave the room, the alarm goes off. To allow workers to safely carry coins out of the room, a special container that is 10" * 10" square is available. A maximum of 1 layer of coins may be spread in the container and when it passes the door, the alarm won't go off. Normally, up to 100 coins can be carried with one such container.
Yesterday we encountered a theft. A container (with coins) was taken out of the working room without triggering the alarm. But what confused me is that 106 coins were lost. I don't know how the thief took the extra 6 coins without setting off the alarm.
Can you help me solve this mystery?
geometry
$endgroup$
add a comment |
$begingroup$
I am a manager of a coin casting foundry. We produce perfectly round coins with some (fixed) thickness and a diameter of exactly 1 inch. The working room is well-secured such that if any coin tries to leave the room, the alarm goes off. To allow workers to safely carry coins out of the room, a special container that is 10" * 10" square is available. A maximum of 1 layer of coins may be spread in the container and when it passes the door, the alarm won't go off. Normally, up to 100 coins can be carried with one such container.
Yesterday we encountered a theft. A container (with coins) was taken out of the working room without triggering the alarm. But what confused me is that 106 coins were lost. I don't know how the thief took the extra 6 coins without setting off the alarm.
Can you help me solve this mystery?
geometry
$endgroup$
$begingroup$
This must have been asked before...
$endgroup$
– Dr Xorile
Dec 1 '18 at 21:38
add a comment |
$begingroup$
I am a manager of a coin casting foundry. We produce perfectly round coins with some (fixed) thickness and a diameter of exactly 1 inch. The working room is well-secured such that if any coin tries to leave the room, the alarm goes off. To allow workers to safely carry coins out of the room, a special container that is 10" * 10" square is available. A maximum of 1 layer of coins may be spread in the container and when it passes the door, the alarm won't go off. Normally, up to 100 coins can be carried with one such container.
Yesterday we encountered a theft. A container (with coins) was taken out of the working room without triggering the alarm. But what confused me is that 106 coins were lost. I don't know how the thief took the extra 6 coins without setting off the alarm.
Can you help me solve this mystery?
geometry
$endgroup$
I am a manager of a coin casting foundry. We produce perfectly round coins with some (fixed) thickness and a diameter of exactly 1 inch. The working room is well-secured such that if any coin tries to leave the room, the alarm goes off. To allow workers to safely carry coins out of the room, a special container that is 10" * 10" square is available. A maximum of 1 layer of coins may be spread in the container and when it passes the door, the alarm won't go off. Normally, up to 100 coins can be carried with one such container.
Yesterday we encountered a theft. A container (with coins) was taken out of the working room without triggering the alarm. But what confused me is that 106 coins were lost. I don't know how the thief took the extra 6 coins without setting off the alarm.
Can you help me solve this mystery?
geometry
geometry
asked Dec 1 '18 at 12:21
iBugiBug
711219
711219
$begingroup$
This must have been asked before...
$endgroup$
– Dr Xorile
Dec 1 '18 at 21:38
add a comment |
$begingroup$
This must have been asked before...
$endgroup$
– Dr Xorile
Dec 1 '18 at 21:38
$begingroup$
This must have been asked before...
$endgroup$
– Dr Xorile
Dec 1 '18 at 21:38
$begingroup$
This must have been asked before...
$endgroup$
– Dr Xorile
Dec 1 '18 at 21:38
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The coins were
packed in a (partially) hexagonal packing. This is more efficient than a 'square' packing, so it allows for some extra coins above the 100.
It looks like this:
(only the black circles; the gray circles are just for comparing measurements)
SVG source code available here
A proof that
this configuration fits is as follows: the distance between $a_1$ and $b_2$ is $1$; the distance between $a_2$ and $b_2$ is $frac{1}{2}$. By Pythagoras, the distance between $a_1$ and $a_2$ is $sqrt{1-frac{1}{2}^2}$ = $frac{1}{2}sqrt{3}$. So the distance between $a_1$ and $a_3$ is $sqrt{3}$, between $a_1$ and $a_5$ it's $2sqrt{3}$, between $a_1$ and $a_7$ it's $2sqrt{3}+2$ and between $a_1$ and $a_{11}$ it's $4sqrt{3}+2 ≈ 8.9282 < 9$, so this configuration fits in a $10 times 10$ square.
Note that 106
is the currently known maximum number of coins that would fit; see this site for more details about minimal circle packings. For $N=107$, the 'ratio' between the circle radius and the length of the square is $20.1995... > 20$, which means the container size needs to be $0.5 ,text{inch} times , 20.1995... > 10 ,text{inch}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "559"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f75948%2fwhere-are-the-extra-coins%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The coins were
packed in a (partially) hexagonal packing. This is more efficient than a 'square' packing, so it allows for some extra coins above the 100.
It looks like this:
(only the black circles; the gray circles are just for comparing measurements)
SVG source code available here
A proof that
this configuration fits is as follows: the distance between $a_1$ and $b_2$ is $1$; the distance between $a_2$ and $b_2$ is $frac{1}{2}$. By Pythagoras, the distance between $a_1$ and $a_2$ is $sqrt{1-frac{1}{2}^2}$ = $frac{1}{2}sqrt{3}$. So the distance between $a_1$ and $a_3$ is $sqrt{3}$, between $a_1$ and $a_5$ it's $2sqrt{3}$, between $a_1$ and $a_7$ it's $2sqrt{3}+2$ and between $a_1$ and $a_{11}$ it's $4sqrt{3}+2 ≈ 8.9282 < 9$, so this configuration fits in a $10 times 10$ square.
Note that 106
is the currently known maximum number of coins that would fit; see this site for more details about minimal circle packings. For $N=107$, the 'ratio' between the circle radius and the length of the square is $20.1995... > 20$, which means the container size needs to be $0.5 ,text{inch} times , 20.1995... > 10 ,text{inch}$.
$endgroup$
add a comment |
$begingroup$
The coins were
packed in a (partially) hexagonal packing. This is more efficient than a 'square' packing, so it allows for some extra coins above the 100.
It looks like this:
(only the black circles; the gray circles are just for comparing measurements)
SVG source code available here
A proof that
this configuration fits is as follows: the distance between $a_1$ and $b_2$ is $1$; the distance between $a_2$ and $b_2$ is $frac{1}{2}$. By Pythagoras, the distance between $a_1$ and $a_2$ is $sqrt{1-frac{1}{2}^2}$ = $frac{1}{2}sqrt{3}$. So the distance between $a_1$ and $a_3$ is $sqrt{3}$, between $a_1$ and $a_5$ it's $2sqrt{3}$, between $a_1$ and $a_7$ it's $2sqrt{3}+2$ and between $a_1$ and $a_{11}$ it's $4sqrt{3}+2 ≈ 8.9282 < 9$, so this configuration fits in a $10 times 10$ square.
Note that 106
is the currently known maximum number of coins that would fit; see this site for more details about minimal circle packings. For $N=107$, the 'ratio' between the circle radius and the length of the square is $20.1995... > 20$, which means the container size needs to be $0.5 ,text{inch} times , 20.1995... > 10 ,text{inch}$.
$endgroup$
add a comment |
$begingroup$
The coins were
packed in a (partially) hexagonal packing. This is more efficient than a 'square' packing, so it allows for some extra coins above the 100.
It looks like this:
(only the black circles; the gray circles are just for comparing measurements)
SVG source code available here
A proof that
this configuration fits is as follows: the distance between $a_1$ and $b_2$ is $1$; the distance between $a_2$ and $b_2$ is $frac{1}{2}$. By Pythagoras, the distance between $a_1$ and $a_2$ is $sqrt{1-frac{1}{2}^2}$ = $frac{1}{2}sqrt{3}$. So the distance between $a_1$ and $a_3$ is $sqrt{3}$, between $a_1$ and $a_5$ it's $2sqrt{3}$, between $a_1$ and $a_7$ it's $2sqrt{3}+2$ and between $a_1$ and $a_{11}$ it's $4sqrt{3}+2 ≈ 8.9282 < 9$, so this configuration fits in a $10 times 10$ square.
Note that 106
is the currently known maximum number of coins that would fit; see this site for more details about minimal circle packings. For $N=107$, the 'ratio' between the circle radius and the length of the square is $20.1995... > 20$, which means the container size needs to be $0.5 ,text{inch} times , 20.1995... > 10 ,text{inch}$.
$endgroup$
The coins were
packed in a (partially) hexagonal packing. This is more efficient than a 'square' packing, so it allows for some extra coins above the 100.
It looks like this:
(only the black circles; the gray circles are just for comparing measurements)
SVG source code available here
A proof that
this configuration fits is as follows: the distance between $a_1$ and $b_2$ is $1$; the distance between $a_2$ and $b_2$ is $frac{1}{2}$. By Pythagoras, the distance between $a_1$ and $a_2$ is $sqrt{1-frac{1}{2}^2}$ = $frac{1}{2}sqrt{3}$. So the distance between $a_1$ and $a_3$ is $sqrt{3}$, between $a_1$ and $a_5$ it's $2sqrt{3}$, between $a_1$ and $a_7$ it's $2sqrt{3}+2$ and between $a_1$ and $a_{11}$ it's $4sqrt{3}+2 ≈ 8.9282 < 9$, so this configuration fits in a $10 times 10$ square.
Note that 106
is the currently known maximum number of coins that would fit; see this site for more details about minimal circle packings. For $N=107$, the 'ratio' between the circle radius and the length of the square is $20.1995... > 20$, which means the container size needs to be $0.5 ,text{inch} times , 20.1995... > 10 ,text{inch}$.
edited Dec 3 '18 at 8:45
answered Dec 1 '18 at 13:20
GlorfindelGlorfindel
13.6k34983
13.6k34983
add a comment |
add a comment |
Thanks for contributing an answer to Puzzling Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f75948%2fwhere-are-the-extra-coins%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This must have been asked before...
$endgroup$
– Dr Xorile
Dec 1 '18 at 21:38