Compute this integral of a form












0












$begingroup$


I need to compute the integral:
$$
int_{mathbb{S}^3}alpha,
$$

where $alphain Omega^3(mathbb{R}^4)$ is given by $alpha=-4t;dxwedge dywedge dz+4z;dxwedge dywedge dt-4y;dxwedge dzwedge dt+4x;dywedge dzwedge dt$.



My problem is that I am getting two different results. If I apply the definition:
$$
begin{array}{rccl}
varphi^+:& mathbb{S}^3cap{t geq 0}:=mathbb{S}^{3+}&longrightarrow&mathbb{D}^3\
&(x,y,z,t)&longmapsto&(x,y,z)
end{array}
$$

$$
begin{array}{rccl}
varphi^-:& mathbb{S}^{3-}cap{t leq 0}:=mathbb{S}^{3-}&longrightarrow&mathbb{D}^3\
&(x,y,z,t)&longmapsto&(x,y,z)
end{array}
$$

The inverses:
$$
begin{array}{rccl}
(varphi^+)^{-1}:& mathbb{D}^3&longrightarrow&mathbb{S}^{3+}\
&(u,v,w)&longmapsto&(u,v,w,sqrt{1-u^2-v^2-w^2})
end{array}
$$

$$
begin{array}{rccl}
(varphi^-)^{-1}:& mathbb{D}^3&longrightarrow&mathbb{S}^{3-}\
&(u,v,w)&longmapsto&(u,v,w,-sqrt{1-u^2-v^2-w^2})
end{array}
$$

If $beta=t;dxwedge dywedge dz$:
$$
int_{mathbb{S}^3}beta=int_{mathbb{S}^{3-}}beta+int_{mathbb{S}^{3+}}beta=int_{mathbb{D}^3}left[(varphi^-)^{-1}right]^*(beta)+int_{mathbb{D}^3}left[(varphi^+)^{-1}right]^*(beta)
$$

$$=-int_{mathbb{D}^3}sqrt{1-u^2-v^2-w^2};du;dv;dw+int_{mathbb{D}^3}sqrt{1-u^2-v^2-w^2};du;dv;dw=0
$$

And also $0$ for the other terms.



But using Stokes theorem I have:
$$
int_{mathbb{S}^3}alpha=int_{partial(mathbb{D}^4)}alpha=int_{mathbb{D}^4}partialalpha=int_{mathbb{D}^4}16;dxwedge dywedge dzwedge dt=16text{Vol}(mathbb{D}^4)not=0
$$

Where is the mistake? Which one is correct?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I need to compute the integral:
    $$
    int_{mathbb{S}^3}alpha,
    $$

    where $alphain Omega^3(mathbb{R}^4)$ is given by $alpha=-4t;dxwedge dywedge dz+4z;dxwedge dywedge dt-4y;dxwedge dzwedge dt+4x;dywedge dzwedge dt$.



    My problem is that I am getting two different results. If I apply the definition:
    $$
    begin{array}{rccl}
    varphi^+:& mathbb{S}^3cap{t geq 0}:=mathbb{S}^{3+}&longrightarrow&mathbb{D}^3\
    &(x,y,z,t)&longmapsto&(x,y,z)
    end{array}
    $$

    $$
    begin{array}{rccl}
    varphi^-:& mathbb{S}^{3-}cap{t leq 0}:=mathbb{S}^{3-}&longrightarrow&mathbb{D}^3\
    &(x,y,z,t)&longmapsto&(x,y,z)
    end{array}
    $$

    The inverses:
    $$
    begin{array}{rccl}
    (varphi^+)^{-1}:& mathbb{D}^3&longrightarrow&mathbb{S}^{3+}\
    &(u,v,w)&longmapsto&(u,v,w,sqrt{1-u^2-v^2-w^2})
    end{array}
    $$

    $$
    begin{array}{rccl}
    (varphi^-)^{-1}:& mathbb{D}^3&longrightarrow&mathbb{S}^{3-}\
    &(u,v,w)&longmapsto&(u,v,w,-sqrt{1-u^2-v^2-w^2})
    end{array}
    $$

    If $beta=t;dxwedge dywedge dz$:
    $$
    int_{mathbb{S}^3}beta=int_{mathbb{S}^{3-}}beta+int_{mathbb{S}^{3+}}beta=int_{mathbb{D}^3}left[(varphi^-)^{-1}right]^*(beta)+int_{mathbb{D}^3}left[(varphi^+)^{-1}right]^*(beta)
    $$

    $$=-int_{mathbb{D}^3}sqrt{1-u^2-v^2-w^2};du;dv;dw+int_{mathbb{D}^3}sqrt{1-u^2-v^2-w^2};du;dv;dw=0
    $$

    And also $0$ for the other terms.



    But using Stokes theorem I have:
    $$
    int_{mathbb{S}^3}alpha=int_{partial(mathbb{D}^4)}alpha=int_{mathbb{D}^4}partialalpha=int_{mathbb{D}^4}16;dxwedge dywedge dzwedge dt=16text{Vol}(mathbb{D}^4)not=0
    $$

    Where is the mistake? Which one is correct?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I need to compute the integral:
      $$
      int_{mathbb{S}^3}alpha,
      $$

      where $alphain Omega^3(mathbb{R}^4)$ is given by $alpha=-4t;dxwedge dywedge dz+4z;dxwedge dywedge dt-4y;dxwedge dzwedge dt+4x;dywedge dzwedge dt$.



      My problem is that I am getting two different results. If I apply the definition:
      $$
      begin{array}{rccl}
      varphi^+:& mathbb{S}^3cap{t geq 0}:=mathbb{S}^{3+}&longrightarrow&mathbb{D}^3\
      &(x,y,z,t)&longmapsto&(x,y,z)
      end{array}
      $$

      $$
      begin{array}{rccl}
      varphi^-:& mathbb{S}^{3-}cap{t leq 0}:=mathbb{S}^{3-}&longrightarrow&mathbb{D}^3\
      &(x,y,z,t)&longmapsto&(x,y,z)
      end{array}
      $$

      The inverses:
      $$
      begin{array}{rccl}
      (varphi^+)^{-1}:& mathbb{D}^3&longrightarrow&mathbb{S}^{3+}\
      &(u,v,w)&longmapsto&(u,v,w,sqrt{1-u^2-v^2-w^2})
      end{array}
      $$

      $$
      begin{array}{rccl}
      (varphi^-)^{-1}:& mathbb{D}^3&longrightarrow&mathbb{S}^{3-}\
      &(u,v,w)&longmapsto&(u,v,w,-sqrt{1-u^2-v^2-w^2})
      end{array}
      $$

      If $beta=t;dxwedge dywedge dz$:
      $$
      int_{mathbb{S}^3}beta=int_{mathbb{S}^{3-}}beta+int_{mathbb{S}^{3+}}beta=int_{mathbb{D}^3}left[(varphi^-)^{-1}right]^*(beta)+int_{mathbb{D}^3}left[(varphi^+)^{-1}right]^*(beta)
      $$

      $$=-int_{mathbb{D}^3}sqrt{1-u^2-v^2-w^2};du;dv;dw+int_{mathbb{D}^3}sqrt{1-u^2-v^2-w^2};du;dv;dw=0
      $$

      And also $0$ for the other terms.



      But using Stokes theorem I have:
      $$
      int_{mathbb{S}^3}alpha=int_{partial(mathbb{D}^4)}alpha=int_{mathbb{D}^4}partialalpha=int_{mathbb{D}^4}16;dxwedge dywedge dzwedge dt=16text{Vol}(mathbb{D}^4)not=0
      $$

      Where is the mistake? Which one is correct?










      share|cite|improve this question









      $endgroup$




      I need to compute the integral:
      $$
      int_{mathbb{S}^3}alpha,
      $$

      where $alphain Omega^3(mathbb{R}^4)$ is given by $alpha=-4t;dxwedge dywedge dz+4z;dxwedge dywedge dt-4y;dxwedge dzwedge dt+4x;dywedge dzwedge dt$.



      My problem is that I am getting two different results. If I apply the definition:
      $$
      begin{array}{rccl}
      varphi^+:& mathbb{S}^3cap{t geq 0}:=mathbb{S}^{3+}&longrightarrow&mathbb{D}^3\
      &(x,y,z,t)&longmapsto&(x,y,z)
      end{array}
      $$

      $$
      begin{array}{rccl}
      varphi^-:& mathbb{S}^{3-}cap{t leq 0}:=mathbb{S}^{3-}&longrightarrow&mathbb{D}^3\
      &(x,y,z,t)&longmapsto&(x,y,z)
      end{array}
      $$

      The inverses:
      $$
      begin{array}{rccl}
      (varphi^+)^{-1}:& mathbb{D}^3&longrightarrow&mathbb{S}^{3+}\
      &(u,v,w)&longmapsto&(u,v,w,sqrt{1-u^2-v^2-w^2})
      end{array}
      $$

      $$
      begin{array}{rccl}
      (varphi^-)^{-1}:& mathbb{D}^3&longrightarrow&mathbb{S}^{3-}\
      &(u,v,w)&longmapsto&(u,v,w,-sqrt{1-u^2-v^2-w^2})
      end{array}
      $$

      If $beta=t;dxwedge dywedge dz$:
      $$
      int_{mathbb{S}^3}beta=int_{mathbb{S}^{3-}}beta+int_{mathbb{S}^{3+}}beta=int_{mathbb{D}^3}left[(varphi^-)^{-1}right]^*(beta)+int_{mathbb{D}^3}left[(varphi^+)^{-1}right]^*(beta)
      $$

      $$=-int_{mathbb{D}^3}sqrt{1-u^2-v^2-w^2};du;dv;dw+int_{mathbb{D}^3}sqrt{1-u^2-v^2-w^2};du;dv;dw=0
      $$

      And also $0$ for the other terms.



      But using Stokes theorem I have:
      $$
      int_{mathbb{S}^3}alpha=int_{partial(mathbb{D}^4)}alpha=int_{mathbb{D}^4}partialalpha=int_{mathbb{D}^4}16;dxwedge dywedge dzwedge dt=16text{Vol}(mathbb{D}^4)not=0
      $$

      Where is the mistake? Which one is correct?







      integration differential-geometry differential-forms






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 7 '18 at 16:00









      davidivadfuldavidivadful

      1289




      1289






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          The Stokes's Theorem application is correct. The mistake comes in half of the first part: With the boundary orientation on $Bbb S^3$, the chart $varphi^+$ is orientation-reversing. So you should get two positive terms for your integrals. (In your computation, in the $varphi^-$ integral, $-4tge 0$, and in the $varphi^+$ integral, you must change sign to compensate for the orientation reversal, and so $-(-4t)ge 0$ once again.)






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030052%2fcompute-this-integral-of-a-form%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            The Stokes's Theorem application is correct. The mistake comes in half of the first part: With the boundary orientation on $Bbb S^3$, the chart $varphi^+$ is orientation-reversing. So you should get two positive terms for your integrals. (In your computation, in the $varphi^-$ integral, $-4tge 0$, and in the $varphi^+$ integral, you must change sign to compensate for the orientation reversal, and so $-(-4t)ge 0$ once again.)






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              The Stokes's Theorem application is correct. The mistake comes in half of the first part: With the boundary orientation on $Bbb S^3$, the chart $varphi^+$ is orientation-reversing. So you should get two positive terms for your integrals. (In your computation, in the $varphi^-$ integral, $-4tge 0$, and in the $varphi^+$ integral, you must change sign to compensate for the orientation reversal, and so $-(-4t)ge 0$ once again.)






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                The Stokes's Theorem application is correct. The mistake comes in half of the first part: With the boundary orientation on $Bbb S^3$, the chart $varphi^+$ is orientation-reversing. So you should get two positive terms for your integrals. (In your computation, in the $varphi^-$ integral, $-4tge 0$, and in the $varphi^+$ integral, you must change sign to compensate for the orientation reversal, and so $-(-4t)ge 0$ once again.)






                share|cite|improve this answer









                $endgroup$



                The Stokes's Theorem application is correct. The mistake comes in half of the first part: With the boundary orientation on $Bbb S^3$, the chart $varphi^+$ is orientation-reversing. So you should get two positive terms for your integrals. (In your computation, in the $varphi^-$ integral, $-4tge 0$, and in the $varphi^+$ integral, you must change sign to compensate for the orientation reversal, and so $-(-4t)ge 0$ once again.)







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 7 '18 at 18:21









                Ted ShifrinTed Shifrin

                63.7k44591




                63.7k44591






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030052%2fcompute-this-integral-of-a-form%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Le Mesnil-Réaume

                    Ida-Boy-Ed-Garten

                    web3.py web3.isConnected() returns false always