Let $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$ where $betain(0,1)$, then...












4












$begingroup$



Suppose $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$, where $beta>0$. Show that:



(i) If $beta>1$ then $S_nto S_infty$ a.s.



(ii) If $betain(0,1)$ then $S_n/n^{(3-beta)/2}Rightarrow cchi$.



(iii) If $beta=1$ then $S_n/nRightarrowaleph$, where
$$Eexp(italeph)=expleft(-int_0^1 x^{-1}(1-cos(xt),mathrm{d}xright).$$




This is problem 3.4.13 in Durrett's Probability text, part (i) was rather trivial, I feel fine about that part. I am having a difficult time on part (ii) though and would like verification for part (iii).



My ideas so far for part (ii) is to define the triangular array as $S_{n,m}=dfrac{X_m}{n^{(3-beta)/2}}$, and then use the Lindeberg-Feller theorem, but I am getting hung up on the details.



For part (iii) consider:



It is a well-known theorem of Levy that if ${X_n}$ is a collection of random variables and $Y$ is another random variable then $X_n Rightarrow Y$ iff $phi_{X_n}(t) rightarrow phi_Y(t)$ as $n rightarrow infty$ and $phi_Y$ is continuous at $t = 0$. Moreover, by properties of Fourier transforms, $phi_{S_n/n}(t) = prodlimits_{1 leq j leq n} phi_{X_j/n}(t)$. Now,
$$phi_{X_j/n}(t) = int_{mathbb{R}} mathrm{d}lambda e^{itlambda} mathbb{P}left(frac{X_j}{n} = lambdaright) = 1-frac{1}{j} + frac{1}{2j}(e^{itfrac{j}{n}} + e^{-itfrac{j}{n}}) = 1-frac{1}{j}(1-cos(tj/n)).
$$

This is clearly real-valued and positive, so that we can write
$$
logphi_{S_n/n}(t) = sum_{j = 1}^n logleft(1-frac{1}{n}cdot frac{n}{j}(1-cos(tj/n)right),
$$

so, up to an $O(1/n)$ error term, we have
$$
log phi_{S_n/n}(t) = frac{1}{n}sum_{j=1}^n frac{n}{j}(1-cos(tj/n)) + Oleft(frac{1}{n}right).
$$

The sum on the right side is a Riemann sum for the exponential, so taking $n rightarrow infty$, we get $phi_{S_n/n}(t) rightarrow Eleft(e^{italeph}right)$, in our notation, the latter of which is continuous at $0$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
    $endgroup$
    – zoidberg
    Dec 9 '18 at 16:30










  • $begingroup$
    @norfair I tried utilizing the same technique but I was not getting the desired result. :-/
    $endgroup$
    – Dragonite
    Dec 9 '18 at 16:47










  • $begingroup$
    Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
    $endgroup$
    – zoidberg
    Dec 9 '18 at 17:19








  • 2




    $begingroup$
    @Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
    $endgroup$
    – saz
    Dec 9 '18 at 18:00
















4












$begingroup$



Suppose $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$, where $beta>0$. Show that:



(i) If $beta>1$ then $S_nto S_infty$ a.s.



(ii) If $betain(0,1)$ then $S_n/n^{(3-beta)/2}Rightarrow cchi$.



(iii) If $beta=1$ then $S_n/nRightarrowaleph$, where
$$Eexp(italeph)=expleft(-int_0^1 x^{-1}(1-cos(xt),mathrm{d}xright).$$




This is problem 3.4.13 in Durrett's Probability text, part (i) was rather trivial, I feel fine about that part. I am having a difficult time on part (ii) though and would like verification for part (iii).



My ideas so far for part (ii) is to define the triangular array as $S_{n,m}=dfrac{X_m}{n^{(3-beta)/2}}$, and then use the Lindeberg-Feller theorem, but I am getting hung up on the details.



For part (iii) consider:



It is a well-known theorem of Levy that if ${X_n}$ is a collection of random variables and $Y$ is another random variable then $X_n Rightarrow Y$ iff $phi_{X_n}(t) rightarrow phi_Y(t)$ as $n rightarrow infty$ and $phi_Y$ is continuous at $t = 0$. Moreover, by properties of Fourier transforms, $phi_{S_n/n}(t) = prodlimits_{1 leq j leq n} phi_{X_j/n}(t)$. Now,
$$phi_{X_j/n}(t) = int_{mathbb{R}} mathrm{d}lambda e^{itlambda} mathbb{P}left(frac{X_j}{n} = lambdaright) = 1-frac{1}{j} + frac{1}{2j}(e^{itfrac{j}{n}} + e^{-itfrac{j}{n}}) = 1-frac{1}{j}(1-cos(tj/n)).
$$

This is clearly real-valued and positive, so that we can write
$$
logphi_{S_n/n}(t) = sum_{j = 1}^n logleft(1-frac{1}{n}cdot frac{n}{j}(1-cos(tj/n)right),
$$

so, up to an $O(1/n)$ error term, we have
$$
log phi_{S_n/n}(t) = frac{1}{n}sum_{j=1}^n frac{n}{j}(1-cos(tj/n)) + Oleft(frac{1}{n}right).
$$

The sum on the right side is a Riemann sum for the exponential, so taking $n rightarrow infty$, we get $phi_{S_n/n}(t) rightarrow Eleft(e^{italeph}right)$, in our notation, the latter of which is continuous at $0$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
    $endgroup$
    – zoidberg
    Dec 9 '18 at 16:30










  • $begingroup$
    @norfair I tried utilizing the same technique but I was not getting the desired result. :-/
    $endgroup$
    – Dragonite
    Dec 9 '18 at 16:47










  • $begingroup$
    Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
    $endgroup$
    – zoidberg
    Dec 9 '18 at 17:19








  • 2




    $begingroup$
    @Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
    $endgroup$
    – saz
    Dec 9 '18 at 18:00














4












4








4


1



$begingroup$



Suppose $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$, where $beta>0$. Show that:



(i) If $beta>1$ then $S_nto S_infty$ a.s.



(ii) If $betain(0,1)$ then $S_n/n^{(3-beta)/2}Rightarrow cchi$.



(iii) If $beta=1$ then $S_n/nRightarrowaleph$, where
$$Eexp(italeph)=expleft(-int_0^1 x^{-1}(1-cos(xt),mathrm{d}xright).$$




This is problem 3.4.13 in Durrett's Probability text, part (i) was rather trivial, I feel fine about that part. I am having a difficult time on part (ii) though and would like verification for part (iii).



My ideas so far for part (ii) is to define the triangular array as $S_{n,m}=dfrac{X_m}{n^{(3-beta)/2}}$, and then use the Lindeberg-Feller theorem, but I am getting hung up on the details.



For part (iii) consider:



It is a well-known theorem of Levy that if ${X_n}$ is a collection of random variables and $Y$ is another random variable then $X_n Rightarrow Y$ iff $phi_{X_n}(t) rightarrow phi_Y(t)$ as $n rightarrow infty$ and $phi_Y$ is continuous at $t = 0$. Moreover, by properties of Fourier transforms, $phi_{S_n/n}(t) = prodlimits_{1 leq j leq n} phi_{X_j/n}(t)$. Now,
$$phi_{X_j/n}(t) = int_{mathbb{R}} mathrm{d}lambda e^{itlambda} mathbb{P}left(frac{X_j}{n} = lambdaright) = 1-frac{1}{j} + frac{1}{2j}(e^{itfrac{j}{n}} + e^{-itfrac{j}{n}}) = 1-frac{1}{j}(1-cos(tj/n)).
$$

This is clearly real-valued and positive, so that we can write
$$
logphi_{S_n/n}(t) = sum_{j = 1}^n logleft(1-frac{1}{n}cdot frac{n}{j}(1-cos(tj/n)right),
$$

so, up to an $O(1/n)$ error term, we have
$$
log phi_{S_n/n}(t) = frac{1}{n}sum_{j=1}^n frac{n}{j}(1-cos(tj/n)) + Oleft(frac{1}{n}right).
$$

The sum on the right side is a Riemann sum for the exponential, so taking $n rightarrow infty$, we get $phi_{S_n/n}(t) rightarrow Eleft(e^{italeph}right)$, in our notation, the latter of which is continuous at $0$.










share|cite|improve this question











$endgroup$





Suppose $P(X_j=j)=P(X_j=-j)=1/2j^{beta}$ and $P(X_j=0)=1-j^{-beta}$, where $beta>0$. Show that:



(i) If $beta>1$ then $S_nto S_infty$ a.s.



(ii) If $betain(0,1)$ then $S_n/n^{(3-beta)/2}Rightarrow cchi$.



(iii) If $beta=1$ then $S_n/nRightarrowaleph$, where
$$Eexp(italeph)=expleft(-int_0^1 x^{-1}(1-cos(xt),mathrm{d}xright).$$




This is problem 3.4.13 in Durrett's Probability text, part (i) was rather trivial, I feel fine about that part. I am having a difficult time on part (ii) though and would like verification for part (iii).



My ideas so far for part (ii) is to define the triangular array as $S_{n,m}=dfrac{X_m}{n^{(3-beta)/2}}$, and then use the Lindeberg-Feller theorem, but I am getting hung up on the details.



For part (iii) consider:



It is a well-known theorem of Levy that if ${X_n}$ is a collection of random variables and $Y$ is another random variable then $X_n Rightarrow Y$ iff $phi_{X_n}(t) rightarrow phi_Y(t)$ as $n rightarrow infty$ and $phi_Y$ is continuous at $t = 0$. Moreover, by properties of Fourier transforms, $phi_{S_n/n}(t) = prodlimits_{1 leq j leq n} phi_{X_j/n}(t)$. Now,
$$phi_{X_j/n}(t) = int_{mathbb{R}} mathrm{d}lambda e^{itlambda} mathbb{P}left(frac{X_j}{n} = lambdaright) = 1-frac{1}{j} + frac{1}{2j}(e^{itfrac{j}{n}} + e^{-itfrac{j}{n}}) = 1-frac{1}{j}(1-cos(tj/n)).
$$

This is clearly real-valued and positive, so that we can write
$$
logphi_{S_n/n}(t) = sum_{j = 1}^n logleft(1-frac{1}{n}cdot frac{n}{j}(1-cos(tj/n)right),
$$

so, up to an $O(1/n)$ error term, we have
$$
log phi_{S_n/n}(t) = frac{1}{n}sum_{j=1}^n frac{n}{j}(1-cos(tj/n)) + Oleft(frac{1}{n}right).
$$

The sum on the right side is a Riemann sum for the exponential, so taking $n rightarrow infty$, we get $phi_{S_n/n}(t) rightarrow Eleft(e^{italeph}right)$, in our notation, the latter of which is continuous at $0$.







probability-theory central-limit-theorem probability-limit-theorems






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 13:42









Saad

19.7k92352




19.7k92352










asked Dec 7 '18 at 16:12









DragoniteDragonite

1,058420




1,058420












  • $begingroup$
    Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
    $endgroup$
    – zoidberg
    Dec 9 '18 at 16:30










  • $begingroup$
    @norfair I tried utilizing the same technique but I was not getting the desired result. :-/
    $endgroup$
    – Dragonite
    Dec 9 '18 at 16:47










  • $begingroup$
    Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
    $endgroup$
    – zoidberg
    Dec 9 '18 at 17:19








  • 2




    $begingroup$
    @Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
    $endgroup$
    – saz
    Dec 9 '18 at 18:00


















  • $begingroup$
    Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
    $endgroup$
    – zoidberg
    Dec 9 '18 at 16:30










  • $begingroup$
    @norfair I tried utilizing the same technique but I was not getting the desired result. :-/
    $endgroup$
    – Dragonite
    Dec 9 '18 at 16:47










  • $begingroup$
    Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
    $endgroup$
    – zoidberg
    Dec 9 '18 at 17:19








  • 2




    $begingroup$
    @Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
    $endgroup$
    – saz
    Dec 9 '18 at 18:00
















$begingroup$
Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
$endgroup$
– zoidberg
Dec 9 '18 at 16:30




$begingroup$
Use the same technique for part (ii) as you are in part (iii), i.e. characteristic functions.
$endgroup$
– zoidberg
Dec 9 '18 at 16:30












$begingroup$
@norfair I tried utilizing the same technique but I was not getting the desired result. :-/
$endgroup$
– Dragonite
Dec 9 '18 at 16:47




$begingroup$
@norfair I tried utilizing the same technique but I was not getting the desired result. :-/
$endgroup$
– Dragonite
Dec 9 '18 at 16:47












$begingroup$
Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
$endgroup$
– zoidberg
Dec 9 '18 at 17:19






$begingroup$
Write out the same formula you had for $beta=1$ for general $beta$ and expand out the corresponding $e^{it j/n}$ and $e^{-it j/n}$ terms in Taylor series. You should see some nice cancellation from the constant and linear terms. You're left with a quadratic and higher order terms...from the form of the characteristic function of normal, it should be clear what to do.
$endgroup$
– zoidberg
Dec 9 '18 at 17:19






2




2




$begingroup$
@Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
$endgroup$
– saz
Dec 9 '18 at 18:00




$begingroup$
@Dragonite You might want to explain what $c_{chi}$ actually means... you didn't introduce the notation.
$endgroup$
– saz
Dec 9 '18 at 18:00










1 Answer
1






active

oldest

votes


















1





+200







$begingroup$

$defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.



Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
$$

it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
$$



For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
$$

Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$

which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.



Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
$$

For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
&leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
end{align*}
$$
sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
$$

thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030072%2flet-px-j-j-px-j-j-1-2j-beta-and-px-j-0-1-j-beta-where-beta-i%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1





    +200







    $begingroup$

    $defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.



    Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
    φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
    $$

    it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
    $$



    For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
    lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
    $$

    Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
    sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
    $$

    which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.



    Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
    1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
    $$

    For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
    sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
    &leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
    end{align*}
    $$
    sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
    $$

    thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.






    share|cite|improve this answer









    $endgroup$


















      1





      +200







      $begingroup$

      $defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.



      Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
      φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
      $$

      it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
      $$



      For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
      lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
      $$

      Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
      sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
      $$

      which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.



      Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
      1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
      $$

      For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
      sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
      &leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
      end{align*}
      $$
      sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
      $$

      thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.






      share|cite|improve this answer









      $endgroup$
















        1





        +200







        1





        +200



        1




        +200



        $begingroup$

        $defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.



        Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
        φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
        $$

        it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
        $$



        For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
        lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
        $$

        Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
        sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
        $$

        which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.



        Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
        1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
        $$

        For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
        sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
        &leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
        end{align*}
        $$
        sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
        $$

        thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.






        share|cite|improve this answer









        $endgroup$



        $defe{mathrm{e}}defi{mathrm{i}}defd{mathrm{d}}$As is written at the start of exercise section, $X_1, X_2, cdots$ are independent.



        Define $X_{n, k} = dfrac{X_k}{n^{frac{3 - β}{2}}}$ for $1 leqslant k leqslant n$. Since Lindeberg's condition does not apply for ${X_{n, k} mid 1 leqslant k leqslant n}$, so the proposition has to be proved directly. Since$$
        φ_{n, k}(t) := E(exp(i t X_{n, k})) = frac{1}{k^β} cosfrac{kt}{n^{frac{3 - β}{2}}} + left( 1 - frac{1}{k^β} right), quad forall t in mathbb{R}
        $$

        it suffices to prove that there exists a constant $c$ that$$lim_{t → ∞} prod_{k = 1}^n φ_{n, k}(t) = expleft( -frac{1}{2} c^2 t^2 right). quad forall t in mathbb{R}
        $$



        For a fixed $t$, in order to apply Exercise 3.1.1., denote $c_{n, k} = φ_{n, k}(t) - 1 = dfrac{1}{k^β} left( cosdfrac{kt}{n^{frac{3 - β}{2}}} - 1 right)$, it suffices to prove that$$
        lim_{n → ∞} max_{1 leqslant k leqslant n} |c_{n, k}| = 0, quad lim_{n → ∞} sum_{k = 1}^n c_{n, k} = -frac{1}{2} c^2 t^2, quad sup_{n geqslant 1} sum_{k = 1}^n |c_{n, k}| < +∞.
        $$

        Since $|c_{n, k}| leqslant dfrac{1}{k^β} · dfrac{1}{2} left( dfrac{kt}{n^{frac{3 - β}{2}}} right)^2 = dfrac{k^{2 - β} t^2}{2n^{3 - β}} leqslant dfrac{t^2}{2n}$, then $limlimits_{n → ∞} maxlimits_{1 leqslant k leqslant n} |c_{n, k}| = 0$ and$$
        sum_{k = 1}^n |c_{n, k}| leqslant sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} leqslant frac{t^2}{2n^{3 - β}} int_1^{n + 1} x^{2 - β} ,d x leqslant frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
        $$

        which implies $suplimits_{n geqslant 1} sumlimits_{k = 1}^n |c_{n, k}| < +∞$.



        Now, since $cos x = 1 - dfrac{x^2}{2} + dfrac{x^4}{24} + o(x^5) (x → 0)$, there exists $δ > 0$ such that$$
        1 - frac{x^2}{2} < cos x < 1 - frac{x^2}{2} + frac{x^4}{23}. quad forall |x| < δ
        $$

        For $n > left( dfrac{t}{δ} right)^{frac{2}{1 - β}}$,begin{align*}
        sum_{k = 1}^n c_{n, k} &leqslant sum_{k = 1}^n frac{1}{k^β} left( -frac{k^2 t^2}{2n^{3 - β}} + frac{k^4 t^4}{23n^{2(3 - β)}} right) = -sum_{k = 1}^n frac{k^{2 - β} t^2}{2n^{3 - β}} + sum_{k = 1}^n frac{k^{4 - β} t^4}{23n^{2(3 - β)}}\
        &leqslant -frac{t^2}{2n^{3 - β}} int_0^n x^{2 - β} ,d x + n · frac{n^{4 - β} t^4}{23n^{2(3 - β)}} = -frac{t^2}{2(3 - β)} + frac{t^4}{23n^{1 - β}},
        end{align*}
        $$
        sum_{k = 1}^n c_{n, k} geqslant -sum_{k = 1}^n frac{1}{k^β} · frac{k^2 t^2}{2n^{3 - β}} geqslant -frac{t^2}{2(3 - β)} left( frac{n + 1}{n} right)^β,
        $$

        thus $limlimits_{n → ∞} sumlimits_{k = 1}^n c_{n, k} = -dfrac{t^2}{2(3 - β)}$. Applying Exercise 3.1.1., $dfrac{S_n}{n^{frac{3 - β}{2}}} Rightarrow cχ$, where $c = dfrac{1}{sqrt{3 - β}}$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 10 '18 at 13:38









        SaadSaad

        19.7k92352




        19.7k92352






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030072%2flet-px-j-j-px-j-j-1-2j-beta-and-px-j-0-1-j-beta-where-beta-i%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten