How to solve this functional equation involving hyperbolic functions?
$begingroup$
I'm reading this (physics) book. They have the recurrence relation (book eq. 14.2.14)
$$f(K_1,0)=-frac{1}{2}ln{2sqrt{cosh(2K_1)}}+frac{1}{2}f(lnsqrt{cosh(2K_1)},0).qquad(1)$$
They give the following solution (book eq. 14.2.15)
$$f(K_1,0)=-ln(2cosh K_1).qquad(2)$$
I tried to check the solution was correct simply plugging (2) into (1) but end up with a $ln(cosh(ln(cosh(K_1)))$ thing.
Questions:
- How do I obtain the solution (2) from (1)?
- Is there an easy way to check the solution is correct?
mathematical-physics functional-equations hyperbolic-functions
$endgroup$
add a comment |
$begingroup$
I'm reading this (physics) book. They have the recurrence relation (book eq. 14.2.14)
$$f(K_1,0)=-frac{1}{2}ln{2sqrt{cosh(2K_1)}}+frac{1}{2}f(lnsqrt{cosh(2K_1)},0).qquad(1)$$
They give the following solution (book eq. 14.2.15)
$$f(K_1,0)=-ln(2cosh K_1).qquad(2)$$
I tried to check the solution was correct simply plugging (2) into (1) but end up with a $ln(cosh(ln(cosh(K_1)))$ thing.
Questions:
- How do I obtain the solution (2) from (1)?
- Is there an easy way to check the solution is correct?
mathematical-physics functional-equations hyperbolic-functions
$endgroup$
$begingroup$
$cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
$endgroup$
– user458276
Dec 21 '18 at 21:01
add a comment |
$begingroup$
I'm reading this (physics) book. They have the recurrence relation (book eq. 14.2.14)
$$f(K_1,0)=-frac{1}{2}ln{2sqrt{cosh(2K_1)}}+frac{1}{2}f(lnsqrt{cosh(2K_1)},0).qquad(1)$$
They give the following solution (book eq. 14.2.15)
$$f(K_1,0)=-ln(2cosh K_1).qquad(2)$$
I tried to check the solution was correct simply plugging (2) into (1) but end up with a $ln(cosh(ln(cosh(K_1)))$ thing.
Questions:
- How do I obtain the solution (2) from (1)?
- Is there an easy way to check the solution is correct?
mathematical-physics functional-equations hyperbolic-functions
$endgroup$
I'm reading this (physics) book. They have the recurrence relation (book eq. 14.2.14)
$$f(K_1,0)=-frac{1}{2}ln{2sqrt{cosh(2K_1)}}+frac{1}{2}f(lnsqrt{cosh(2K_1)},0).qquad(1)$$
They give the following solution (book eq. 14.2.15)
$$f(K_1,0)=-ln(2cosh K_1).qquad(2)$$
I tried to check the solution was correct simply plugging (2) into (1) but end up with a $ln(cosh(ln(cosh(K_1)))$ thing.
Questions:
- How do I obtain the solution (2) from (1)?
- Is there an easy way to check the solution is correct?
mathematical-physics functional-equations hyperbolic-functions
mathematical-physics functional-equations hyperbolic-functions
edited Dec 21 '18 at 20:18
Saavestro
asked Dec 21 '18 at 18:51
SaavestroSaavestro
1345
1345
$begingroup$
$cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
$endgroup$
– user458276
Dec 21 '18 at 21:01
add a comment |
$begingroup$
$cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
$endgroup$
– user458276
Dec 21 '18 at 21:01
$begingroup$
$cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
$endgroup$
– user458276
Dec 21 '18 at 21:01
$begingroup$
$cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
$endgroup$
– user458276
Dec 21 '18 at 21:01
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}
then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}
Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}
$endgroup$
$begingroup$
Nice check, thank you. Any idea on how to derive the solution from equation (1)?
$endgroup$
– Saavestro
Dec 21 '18 at 20:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048790%2fhow-to-solve-this-functional-equation-involving-hyperbolic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}
then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}
Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}
$endgroup$
$begingroup$
Nice check, thank you. Any idea on how to derive the solution from equation (1)?
$endgroup$
– Saavestro
Dec 21 '18 at 20:14
add a comment |
$begingroup$
Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}
then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}
Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}
$endgroup$
$begingroup$
Nice check, thank you. Any idea on how to derive the solution from equation (1)?
$endgroup$
– Saavestro
Dec 21 '18 at 20:14
add a comment |
$begingroup$
Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}
then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}
Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}
$endgroup$
Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}
then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}
Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}
answered Dec 21 '18 at 19:54
Jacky ChongJacky Chong
19.3k21129
19.3k21129
$begingroup$
Nice check, thank you. Any idea on how to derive the solution from equation (1)?
$endgroup$
– Saavestro
Dec 21 '18 at 20:14
add a comment |
$begingroup$
Nice check, thank you. Any idea on how to derive the solution from equation (1)?
$endgroup$
– Saavestro
Dec 21 '18 at 20:14
$begingroup$
Nice check, thank you. Any idea on how to derive the solution from equation (1)?
$endgroup$
– Saavestro
Dec 21 '18 at 20:14
$begingroup$
Nice check, thank you. Any idea on how to derive the solution from equation (1)?
$endgroup$
– Saavestro
Dec 21 '18 at 20:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048790%2fhow-to-solve-this-functional-equation-involving-hyperbolic-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
$endgroup$
– user458276
Dec 21 '18 at 21:01