How to solve this functional equation involving hyperbolic functions?












2












$begingroup$


I'm reading this (physics) book. They have the recurrence relation (book eq. 14.2.14)



$$f(K_1,0)=-frac{1}{2}ln{2sqrt{cosh(2K_1)}}+frac{1}{2}f(lnsqrt{cosh(2K_1)},0).qquad(1)$$



They give the following solution (book eq. 14.2.15)



$$f(K_1,0)=-ln(2cosh K_1).qquad(2)$$



I tried to check the solution was correct simply plugging (2) into (1) but end up with a $ln(cosh(ln(cosh(K_1)))$ thing.



Questions:




  1. How do I obtain the solution (2) from (1)?

  2. Is there an easy way to check the solution is correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
    $endgroup$
    – user458276
    Dec 21 '18 at 21:01
















2












$begingroup$


I'm reading this (physics) book. They have the recurrence relation (book eq. 14.2.14)



$$f(K_1,0)=-frac{1}{2}ln{2sqrt{cosh(2K_1)}}+frac{1}{2}f(lnsqrt{cosh(2K_1)},0).qquad(1)$$



They give the following solution (book eq. 14.2.15)



$$f(K_1,0)=-ln(2cosh K_1).qquad(2)$$



I tried to check the solution was correct simply plugging (2) into (1) but end up with a $ln(cosh(ln(cosh(K_1)))$ thing.



Questions:




  1. How do I obtain the solution (2) from (1)?

  2. Is there an easy way to check the solution is correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
    $endgroup$
    – user458276
    Dec 21 '18 at 21:01














2












2








2





$begingroup$


I'm reading this (physics) book. They have the recurrence relation (book eq. 14.2.14)



$$f(K_1,0)=-frac{1}{2}ln{2sqrt{cosh(2K_1)}}+frac{1}{2}f(lnsqrt{cosh(2K_1)},0).qquad(1)$$



They give the following solution (book eq. 14.2.15)



$$f(K_1,0)=-ln(2cosh K_1).qquad(2)$$



I tried to check the solution was correct simply plugging (2) into (1) but end up with a $ln(cosh(ln(cosh(K_1)))$ thing.



Questions:




  1. How do I obtain the solution (2) from (1)?

  2. Is there an easy way to check the solution is correct?










share|cite|improve this question











$endgroup$




I'm reading this (physics) book. They have the recurrence relation (book eq. 14.2.14)



$$f(K_1,0)=-frac{1}{2}ln{2sqrt{cosh(2K_1)}}+frac{1}{2}f(lnsqrt{cosh(2K_1)},0).qquad(1)$$



They give the following solution (book eq. 14.2.15)



$$f(K_1,0)=-ln(2cosh K_1).qquad(2)$$



I tried to check the solution was correct simply plugging (2) into (1) but end up with a $ln(cosh(ln(cosh(K_1)))$ thing.



Questions:




  1. How do I obtain the solution (2) from (1)?

  2. Is there an easy way to check the solution is correct?







mathematical-physics functional-equations hyperbolic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 21 '18 at 20:18







Saavestro

















asked Dec 21 '18 at 18:51









SaavestroSaavestro

1345




1345












  • $begingroup$
    $cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
    $endgroup$
    – user458276
    Dec 21 '18 at 21:01


















  • $begingroup$
    $cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
    $endgroup$
    – user458276
    Dec 21 '18 at 21:01
















$begingroup$
$cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
$endgroup$
– user458276
Dec 21 '18 at 21:01




$begingroup$
$cosh(ln(x)) = dfrac{x^{2}+1}{2x}$
$endgroup$
– user458276
Dec 21 '18 at 21:01










1 Answer
1






active

oldest

votes


















3












$begingroup$

Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}

then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}

Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Nice check, thank you. Any idea on how to derive the solution from equation (1)?
    $endgroup$
    – Saavestro
    Dec 21 '18 at 20:14











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048790%2fhow-to-solve-this-functional-equation-involving-hyperbolic-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}

then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}

Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Nice check, thank you. Any idea on how to derive the solution from equation (1)?
    $endgroup$
    – Saavestro
    Dec 21 '18 at 20:14
















3












$begingroup$

Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}

then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}

Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Nice check, thank you. Any idea on how to derive the solution from equation (1)?
    $endgroup$
    – Saavestro
    Dec 21 '18 at 20:14














3












3








3





$begingroup$

Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}

then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}

Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}






share|cite|improve this answer









$endgroup$



Note that
begin{align}
cosh x = frac{e^x+e^{-x}}{2}
end{align}

then you see that
begin{align}
2 cosh( ln( sqrt{cosh(2K_1)}) =& 2frac{expleft(ln sqrt{cosh(2K_1)}right)+expleft(-ln sqrt{cosh(2K_1)} right)}{2}\
=& 2frac{sqrt{cosh 2K_1}+ (sqrt{cosh 2K_1})^{-1}}{2} = frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}}.
end{align}

Then it follows
begin{align}
-frac{1}{2}lnleft(2sqrt{cosh 2K_1} right)-frac{1}{2}lnleft(frac{cosh 2K_1 +1}{sqrt{cosh 2K_1}} right)=& -frac{1}{2}lnleft( 2cosh(2K_1)+2right)\
=& -frac{1}{2}ln(4cosh^2 K_1).
end{align}







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 21 '18 at 19:54









Jacky ChongJacky Chong

19.3k21129




19.3k21129












  • $begingroup$
    Nice check, thank you. Any idea on how to derive the solution from equation (1)?
    $endgroup$
    – Saavestro
    Dec 21 '18 at 20:14


















  • $begingroup$
    Nice check, thank you. Any idea on how to derive the solution from equation (1)?
    $endgroup$
    – Saavestro
    Dec 21 '18 at 20:14
















$begingroup$
Nice check, thank you. Any idea on how to derive the solution from equation (1)?
$endgroup$
– Saavestro
Dec 21 '18 at 20:14




$begingroup$
Nice check, thank you. Any idea on how to derive the solution from equation (1)?
$endgroup$
– Saavestro
Dec 21 '18 at 20:14


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048790%2fhow-to-solve-this-functional-equation-involving-hyperbolic-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten