Limit with arctan: $lim_{xrightarrow 0} frac{xsin 3x}{arctan x^2}$
$begingroup$
$$lim_{xrightarrow 0} frac{xsin 3x}{arctan x^2}$$
NB! I haven't learnt about L'Hôpital's rule yet, so I'm still solving limits using common limits.
What I've done so far
$$lim_{xrightarrow0}left[frac{x}{arctan x^2}cdot 3xcdot frac{sin 3x}{3x}right] = 0cdot1cdotlim_{xrightarrow0}left[frac{x}{arctan x^2}right] = 0??$$
Obviously I'm wrong, but I thought I'd show what I tried.
calculus limits
$endgroup$
add a comment |
$begingroup$
$$lim_{xrightarrow 0} frac{xsin 3x}{arctan x^2}$$
NB! I haven't learnt about L'Hôpital's rule yet, so I'm still solving limits using common limits.
What I've done so far
$$lim_{xrightarrow0}left[frac{x}{arctan x^2}cdot 3xcdot frac{sin 3x}{3x}right] = 0cdot1cdotlim_{xrightarrow0}left[frac{x}{arctan x^2}right] = 0??$$
Obviously I'm wrong, but I thought I'd show what I tried.
calculus limits
$endgroup$
$begingroup$
Do you have this inequality: $sin x leq x leq tan x$ for $x geq 0$? And the limits that follow from it: $sin x / x rightarrow 0$, etc.?
$endgroup$
– Simon S
Nov 3 '14 at 23:46
add a comment |
$begingroup$
$$lim_{xrightarrow 0} frac{xsin 3x}{arctan x^2}$$
NB! I haven't learnt about L'Hôpital's rule yet, so I'm still solving limits using common limits.
What I've done so far
$$lim_{xrightarrow0}left[frac{x}{arctan x^2}cdot 3xcdot frac{sin 3x}{3x}right] = 0cdot1cdotlim_{xrightarrow0}left[frac{x}{arctan x^2}right] = 0??$$
Obviously I'm wrong, but I thought I'd show what I tried.
calculus limits
$endgroup$
$$lim_{xrightarrow 0} frac{xsin 3x}{arctan x^2}$$
NB! I haven't learnt about L'Hôpital's rule yet, so I'm still solving limits using common limits.
What I've done so far
$$lim_{xrightarrow0}left[frac{x}{arctan x^2}cdot 3xcdot frac{sin 3x}{3x}right] = 0cdot1cdotlim_{xrightarrow0}left[frac{x}{arctan x^2}right] = 0??$$
Obviously I'm wrong, but I thought I'd show what I tried.
calculus limits
calculus limits
edited Dec 21 '18 at 17:10
Larry
2,53031131
2,53031131
asked Nov 3 '14 at 23:36
B. LeeB. Lee
900916
900916
$begingroup$
Do you have this inequality: $sin x leq x leq tan x$ for $x geq 0$? And the limits that follow from it: $sin x / x rightarrow 0$, etc.?
$endgroup$
– Simon S
Nov 3 '14 at 23:46
add a comment |
$begingroup$
Do you have this inequality: $sin x leq x leq tan x$ for $x geq 0$? And the limits that follow from it: $sin x / x rightarrow 0$, etc.?
$endgroup$
– Simon S
Nov 3 '14 at 23:46
$begingroup$
Do you have this inequality: $sin x leq x leq tan x$ for $x geq 0$? And the limits that follow from it: $sin x / x rightarrow 0$, etc.?
$endgroup$
– Simon S
Nov 3 '14 at 23:46
$begingroup$
Do you have this inequality: $sin x leq x leq tan x$ for $x geq 0$? And the limits that follow from it: $sin x / x rightarrow 0$, etc.?
$endgroup$
– Simon S
Nov 3 '14 at 23:46
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
You should put in
$$
frac{x^2}{arctan x^2}
$$
that has limit $1$:
$$
lim_{xto0}frac{xsin3x}{arctan x^2}=
lim_{xto0}3frac{sin3x}{3x}frac{x^2}{arctan x^2}=dots
$$
If you don't know the limit above, just substitute $t=arctan x^2$, so $x^2=tan t$ and the limit is
$$
lim_{xto0}frac{x^2}{arctan x^2}=lim_{tto0}frac{tan t}{t}
$$
that you should be able to manage.
$endgroup$
add a comment |
$begingroup$
Starting as you did, we want to find the limit of
$$frac{3x^2}{arctan(x^2)}cdotfrac{sin(3x)}{3x}.$$
Only the first term gives any trouble. Let $x$ be not too large, and let $x^2=tan w$, You want to find
$$lim_{wto 0} frac{3tan w}{w},$$
which is not difficult. Replace $tan w$ by $frac{sin w}{cos w}$.
$endgroup$
add a comment |
$begingroup$
Since $u sim tan u$, then $y sim arctan y$, so $x^2 sim arctan (x^2)$.
This means that
$$lim_{x to 0} frac{x sin 3x}{arctan x^2} = lim_{x to 0} frac{x3x}{x^2} = 3$$
$endgroup$
$begingroup$
This feels unsatisfactory, as you are still using the derivatives of the functions in the numerator and denominator.
$endgroup$
– Simon S
Nov 3 '14 at 23:42
add a comment |
$begingroup$
Using the Asymptotic expansion:
$sin(x)approx_0 x$
$arctan(x^2) approx_0 x^2$
So
$$lim _{xrightarrow :0}:frac{xsin :3x}{arctan :x^2}=lim :_{xrightarrow 0}:frac{3x^2}{x^2}=color{red}{3}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1005029%2flimit-with-arctan-lim-x-rightarrow-0-fracx-sin-3x-arctan-x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You should put in
$$
frac{x^2}{arctan x^2}
$$
that has limit $1$:
$$
lim_{xto0}frac{xsin3x}{arctan x^2}=
lim_{xto0}3frac{sin3x}{3x}frac{x^2}{arctan x^2}=dots
$$
If you don't know the limit above, just substitute $t=arctan x^2$, so $x^2=tan t$ and the limit is
$$
lim_{xto0}frac{x^2}{arctan x^2}=lim_{tto0}frac{tan t}{t}
$$
that you should be able to manage.
$endgroup$
add a comment |
$begingroup$
You should put in
$$
frac{x^2}{arctan x^2}
$$
that has limit $1$:
$$
lim_{xto0}frac{xsin3x}{arctan x^2}=
lim_{xto0}3frac{sin3x}{3x}frac{x^2}{arctan x^2}=dots
$$
If you don't know the limit above, just substitute $t=arctan x^2$, so $x^2=tan t$ and the limit is
$$
lim_{xto0}frac{x^2}{arctan x^2}=lim_{tto0}frac{tan t}{t}
$$
that you should be able to manage.
$endgroup$
add a comment |
$begingroup$
You should put in
$$
frac{x^2}{arctan x^2}
$$
that has limit $1$:
$$
lim_{xto0}frac{xsin3x}{arctan x^2}=
lim_{xto0}3frac{sin3x}{3x}frac{x^2}{arctan x^2}=dots
$$
If you don't know the limit above, just substitute $t=arctan x^2$, so $x^2=tan t$ and the limit is
$$
lim_{xto0}frac{x^2}{arctan x^2}=lim_{tto0}frac{tan t}{t}
$$
that you should be able to manage.
$endgroup$
You should put in
$$
frac{x^2}{arctan x^2}
$$
that has limit $1$:
$$
lim_{xto0}frac{xsin3x}{arctan x^2}=
lim_{xto0}3frac{sin3x}{3x}frac{x^2}{arctan x^2}=dots
$$
If you don't know the limit above, just substitute $t=arctan x^2$, so $x^2=tan t$ and the limit is
$$
lim_{xto0}frac{x^2}{arctan x^2}=lim_{tto0}frac{tan t}{t}
$$
that you should be able to manage.
answered Nov 3 '14 at 23:47
egregegreg
185k1486206
185k1486206
add a comment |
add a comment |
$begingroup$
Starting as you did, we want to find the limit of
$$frac{3x^2}{arctan(x^2)}cdotfrac{sin(3x)}{3x}.$$
Only the first term gives any trouble. Let $x$ be not too large, and let $x^2=tan w$, You want to find
$$lim_{wto 0} frac{3tan w}{w},$$
which is not difficult. Replace $tan w$ by $frac{sin w}{cos w}$.
$endgroup$
add a comment |
$begingroup$
Starting as you did, we want to find the limit of
$$frac{3x^2}{arctan(x^2)}cdotfrac{sin(3x)}{3x}.$$
Only the first term gives any trouble. Let $x$ be not too large, and let $x^2=tan w$, You want to find
$$lim_{wto 0} frac{3tan w}{w},$$
which is not difficult. Replace $tan w$ by $frac{sin w}{cos w}$.
$endgroup$
add a comment |
$begingroup$
Starting as you did, we want to find the limit of
$$frac{3x^2}{arctan(x^2)}cdotfrac{sin(3x)}{3x}.$$
Only the first term gives any trouble. Let $x$ be not too large, and let $x^2=tan w$, You want to find
$$lim_{wto 0} frac{3tan w}{w},$$
which is not difficult. Replace $tan w$ by $frac{sin w}{cos w}$.
$endgroup$
Starting as you did, we want to find the limit of
$$frac{3x^2}{arctan(x^2)}cdotfrac{sin(3x)}{3x}.$$
Only the first term gives any trouble. Let $x$ be not too large, and let $x^2=tan w$, You want to find
$$lim_{wto 0} frac{3tan w}{w},$$
which is not difficult. Replace $tan w$ by $frac{sin w}{cos w}$.
answered Nov 3 '14 at 23:50
André NicolasAndré Nicolas
454k36432819
454k36432819
add a comment |
add a comment |
$begingroup$
Since $u sim tan u$, then $y sim arctan y$, so $x^2 sim arctan (x^2)$.
This means that
$$lim_{x to 0} frac{x sin 3x}{arctan x^2} = lim_{x to 0} frac{x3x}{x^2} = 3$$
$endgroup$
$begingroup$
This feels unsatisfactory, as you are still using the derivatives of the functions in the numerator and denominator.
$endgroup$
– Simon S
Nov 3 '14 at 23:42
add a comment |
$begingroup$
Since $u sim tan u$, then $y sim arctan y$, so $x^2 sim arctan (x^2)$.
This means that
$$lim_{x to 0} frac{x sin 3x}{arctan x^2} = lim_{x to 0} frac{x3x}{x^2} = 3$$
$endgroup$
$begingroup$
This feels unsatisfactory, as you are still using the derivatives of the functions in the numerator and denominator.
$endgroup$
– Simon S
Nov 3 '14 at 23:42
add a comment |
$begingroup$
Since $u sim tan u$, then $y sim arctan y$, so $x^2 sim arctan (x^2)$.
This means that
$$lim_{x to 0} frac{x sin 3x}{arctan x^2} = lim_{x to 0} frac{x3x}{x^2} = 3$$
$endgroup$
Since $u sim tan u$, then $y sim arctan y$, so $x^2 sim arctan (x^2)$.
This means that
$$lim_{x to 0} frac{x sin 3x}{arctan x^2} = lim_{x to 0} frac{x3x}{x^2} = 3$$
answered Nov 3 '14 at 23:41
CrostulCrostul
28.2k22352
28.2k22352
$begingroup$
This feels unsatisfactory, as you are still using the derivatives of the functions in the numerator and denominator.
$endgroup$
– Simon S
Nov 3 '14 at 23:42
add a comment |
$begingroup$
This feels unsatisfactory, as you are still using the derivatives of the functions in the numerator and denominator.
$endgroup$
– Simon S
Nov 3 '14 at 23:42
$begingroup$
This feels unsatisfactory, as you are still using the derivatives of the functions in the numerator and denominator.
$endgroup$
– Simon S
Nov 3 '14 at 23:42
$begingroup$
This feels unsatisfactory, as you are still using the derivatives of the functions in the numerator and denominator.
$endgroup$
– Simon S
Nov 3 '14 at 23:42
add a comment |
$begingroup$
Using the Asymptotic expansion:
$sin(x)approx_0 x$
$arctan(x^2) approx_0 x^2$
So
$$lim _{xrightarrow :0}:frac{xsin :3x}{arctan :x^2}=lim :_{xrightarrow 0}:frac{3x^2}{x^2}=color{red}{3}$$
$endgroup$
add a comment |
$begingroup$
Using the Asymptotic expansion:
$sin(x)approx_0 x$
$arctan(x^2) approx_0 x^2$
So
$$lim _{xrightarrow :0}:frac{xsin :3x}{arctan :x^2}=lim :_{xrightarrow 0}:frac{3x^2}{x^2}=color{red}{3}$$
$endgroup$
add a comment |
$begingroup$
Using the Asymptotic expansion:
$sin(x)approx_0 x$
$arctan(x^2) approx_0 x^2$
So
$$lim _{xrightarrow :0}:frac{xsin :3x}{arctan :x^2}=lim :_{xrightarrow 0}:frac{3x^2}{x^2}=color{red}{3}$$
$endgroup$
Using the Asymptotic expansion:
$sin(x)approx_0 x$
$arctan(x^2) approx_0 x^2$
So
$$lim _{xrightarrow :0}:frac{xsin :3x}{arctan :x^2}=lim :_{xrightarrow 0}:frac{3x^2}{x^2}=color{red}{3}$$
answered Oct 27 '16 at 20:49
AmarildoAmarildo
1,789816
1,789816
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1005029%2flimit-with-arctan-lim-x-rightarrow-0-fracx-sin-3x-arctan-x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you have this inequality: $sin x leq x leq tan x$ for $x geq 0$? And the limits that follow from it: $sin x / x rightarrow 0$, etc.?
$endgroup$
– Simon S
Nov 3 '14 at 23:46