Prove / Disprove that $Ebig((X−a)^4big)$ is minimized when $a=E(X)$.












2












$begingroup$



Let $X$ be a random variable with moment up to order $4$. Prove / disprove that $Ebig((X−a)^4big)$ is minimized when $a=E(X)$.




I've already proved that $E((X−a)^2)$ is minimized as such, but I'm lost with the 4 power. I've tried things from differentiating to opening up the parenthesis and trying to work from there but nothing worked.



plus I couldn't come up with any counter-example.



any help is appreciated!
thanks










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Can you express $E((X-a)^4)$ as a function of $E((X-a)^2)$? Hint: variance.
    $endgroup$
    – Frank Vel
    Dec 14 '18 at 21:08


















2












$begingroup$



Let $X$ be a random variable with moment up to order $4$. Prove / disprove that $Ebig((X−a)^4big)$ is minimized when $a=E(X)$.




I've already proved that $E((X−a)^2)$ is minimized as such, but I'm lost with the 4 power. I've tried things from differentiating to opening up the parenthesis and trying to work from there but nothing worked.



plus I couldn't come up with any counter-example.



any help is appreciated!
thanks










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Can you express $E((X-a)^4)$ as a function of $E((X-a)^2)$? Hint: variance.
    $endgroup$
    – Frank Vel
    Dec 14 '18 at 21:08
















2












2








2





$begingroup$



Let $X$ be a random variable with moment up to order $4$. Prove / disprove that $Ebig((X−a)^4big)$ is minimized when $a=E(X)$.




I've already proved that $E((X−a)^2)$ is minimized as such, but I'm lost with the 4 power. I've tried things from differentiating to opening up the parenthesis and trying to work from there but nothing worked.



plus I couldn't come up with any counter-example.



any help is appreciated!
thanks










share|cite|improve this question











$endgroup$





Let $X$ be a random variable with moment up to order $4$. Prove / disprove that $Ebig((X−a)^4big)$ is minimized when $a=E(X)$.




I've already proved that $E((X−a)^2)$ is minimized as such, but I'm lost with the 4 power. I've tried things from differentiating to opening up the parenthesis and trying to work from there but nothing worked.



plus I couldn't come up with any counter-example.



any help is appreciated!
thanks







probability optimization random means expected-value






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 14 '18 at 21:08









Batominovski

33.1k33293




33.1k33293










asked Dec 14 '18 at 21:04









Itay DayItay Day

111




111








  • 1




    $begingroup$
    Can you express $E((X-a)^4)$ as a function of $E((X-a)^2)$? Hint: variance.
    $endgroup$
    – Frank Vel
    Dec 14 '18 at 21:08
















  • 1




    $begingroup$
    Can you express $E((X-a)^4)$ as a function of $E((X-a)^2)$? Hint: variance.
    $endgroup$
    – Frank Vel
    Dec 14 '18 at 21:08










1




1




$begingroup$
Can you express $E((X-a)^4)$ as a function of $E((X-a)^2)$? Hint: variance.
$endgroup$
– Frank Vel
Dec 14 '18 at 21:08






$begingroup$
Can you express $E((X-a)^4)$ as a function of $E((X-a)^2)$? Hint: variance.
$endgroup$
– Frank Vel
Dec 14 '18 at 21:08












2 Answers
2






active

oldest

votes


















2












$begingroup$

Expanding $mathbb{E}left[(X-a)^4right]$ yields
$$f(a):=mathbb{E}left[(X-a)^4right]=mathbb{E}[X^4]-4,mathbb{E}[X^3],a+6,mathbb{E}[X^2],a^2-4,mathbb{E}[X],a^3+a^4,.$$
Thus,
$$f'(a)=-4,mathbb{E}[X^3]+12,mathbb{E}[X^2],a-12,mathbb{E}[X],a^2+4,a^3,.$$
Therefore, if $a=mathbb{E}[X]$ minimizes $f$, then $f'big(mathbb{E}[X]big)=0$, and so
$$-mathbb{E}[X^3]+3,mathbb{E}[X^2],mathbb{E}[X]-2,big(mathbb{E}[X]big)^3=0,.tag{*}$$
Hence, if (*) does not hold, then you have found a counterexample, say, a random variable $X$ with $mathbb{E}[X]=0$ but $mathbb{E}[X^3]neq 0$.




Take $X$ to be the discrete random variable with values $-1$ and $2$ such that $$mathbb{P}[X=-1]=frac{2}{3}text{ and }mathbb{P}[X=2]=frac13,.$$ Then, $$mathbb{E}[X]=0text{ whereas }mathbb{E}[X^3]=2neq 0,.$$ Indeed, $f(a)=6-8a+12a^2+a^4$ so $f(a)$ is minimized when $$a=18left(sqrt[3]{2}-1right)neq 0=mathbb{E}[X],.$$







share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    You can take the derivative first and get $4E(X-a)^3)$, then expand out.
    $endgroup$
    – Acccumulation
    Dec 14 '18 at 21:36










  • $begingroup$
    Without loss of generality we can reduce the OP's conjecture to $Bbb E[(X-a)^4]$ being minimised at $a=0$ if $Bbb E[X]=0$, so (*) becomes $Bbb E[X^3]=0$ (provided $X$ has finite variance), which won't hold for a skewed distribution.
    $endgroup$
    – J.G.
    Dec 14 '18 at 22:22



















0












$begingroup$

For a counter example take a look at a random variable with $Xin{1,-2}$ with probabilities $$P(X=+1) =frac{2}{3}, qquad P(X=-2) = frac{1}{3},.$$



Now, we can see that
$$E(X) =frac{2}{3} cdot 1 + frac{1}{3}cdot(-2) = 0,.$$



However,
$$E((X-a)^4) = frac{2}{3} cdot (1-a)^4 + frac{1}{3}cdot(-2-a)^4,.$$



We have
$$ frac{81}{16}= E((X+tfrac12)^4) < E(X^4) = 6$$
providing a counterexample.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    We both came up with very similar counterexamples.
    $endgroup$
    – Batominovski
    Dec 14 '18 at 21:19













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039880%2fprove-disprove-that-e-bigx%25e2%2588%2592a4-big-is-minimized-when-a-ex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Expanding $mathbb{E}left[(X-a)^4right]$ yields
$$f(a):=mathbb{E}left[(X-a)^4right]=mathbb{E}[X^4]-4,mathbb{E}[X^3],a+6,mathbb{E}[X^2],a^2-4,mathbb{E}[X],a^3+a^4,.$$
Thus,
$$f'(a)=-4,mathbb{E}[X^3]+12,mathbb{E}[X^2],a-12,mathbb{E}[X],a^2+4,a^3,.$$
Therefore, if $a=mathbb{E}[X]$ minimizes $f$, then $f'big(mathbb{E}[X]big)=0$, and so
$$-mathbb{E}[X^3]+3,mathbb{E}[X^2],mathbb{E}[X]-2,big(mathbb{E}[X]big)^3=0,.tag{*}$$
Hence, if (*) does not hold, then you have found a counterexample, say, a random variable $X$ with $mathbb{E}[X]=0$ but $mathbb{E}[X^3]neq 0$.




Take $X$ to be the discrete random variable with values $-1$ and $2$ such that $$mathbb{P}[X=-1]=frac{2}{3}text{ and }mathbb{P}[X=2]=frac13,.$$ Then, $$mathbb{E}[X]=0text{ whereas }mathbb{E}[X^3]=2neq 0,.$$ Indeed, $f(a)=6-8a+12a^2+a^4$ so $f(a)$ is minimized when $$a=18left(sqrt[3]{2}-1right)neq 0=mathbb{E}[X],.$$







share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    You can take the derivative first and get $4E(X-a)^3)$, then expand out.
    $endgroup$
    – Acccumulation
    Dec 14 '18 at 21:36










  • $begingroup$
    Without loss of generality we can reduce the OP's conjecture to $Bbb E[(X-a)^4]$ being minimised at $a=0$ if $Bbb E[X]=0$, so (*) becomes $Bbb E[X^3]=0$ (provided $X$ has finite variance), which won't hold for a skewed distribution.
    $endgroup$
    – J.G.
    Dec 14 '18 at 22:22
















2












$begingroup$

Expanding $mathbb{E}left[(X-a)^4right]$ yields
$$f(a):=mathbb{E}left[(X-a)^4right]=mathbb{E}[X^4]-4,mathbb{E}[X^3],a+6,mathbb{E}[X^2],a^2-4,mathbb{E}[X],a^3+a^4,.$$
Thus,
$$f'(a)=-4,mathbb{E}[X^3]+12,mathbb{E}[X^2],a-12,mathbb{E}[X],a^2+4,a^3,.$$
Therefore, if $a=mathbb{E}[X]$ minimizes $f$, then $f'big(mathbb{E}[X]big)=0$, and so
$$-mathbb{E}[X^3]+3,mathbb{E}[X^2],mathbb{E}[X]-2,big(mathbb{E}[X]big)^3=0,.tag{*}$$
Hence, if (*) does not hold, then you have found a counterexample, say, a random variable $X$ with $mathbb{E}[X]=0$ but $mathbb{E}[X^3]neq 0$.




Take $X$ to be the discrete random variable with values $-1$ and $2$ such that $$mathbb{P}[X=-1]=frac{2}{3}text{ and }mathbb{P}[X=2]=frac13,.$$ Then, $$mathbb{E}[X]=0text{ whereas }mathbb{E}[X^3]=2neq 0,.$$ Indeed, $f(a)=6-8a+12a^2+a^4$ so $f(a)$ is minimized when $$a=18left(sqrt[3]{2}-1right)neq 0=mathbb{E}[X],.$$







share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    You can take the derivative first and get $4E(X-a)^3)$, then expand out.
    $endgroup$
    – Acccumulation
    Dec 14 '18 at 21:36










  • $begingroup$
    Without loss of generality we can reduce the OP's conjecture to $Bbb E[(X-a)^4]$ being minimised at $a=0$ if $Bbb E[X]=0$, so (*) becomes $Bbb E[X^3]=0$ (provided $X$ has finite variance), which won't hold for a skewed distribution.
    $endgroup$
    – J.G.
    Dec 14 '18 at 22:22














2












2








2





$begingroup$

Expanding $mathbb{E}left[(X-a)^4right]$ yields
$$f(a):=mathbb{E}left[(X-a)^4right]=mathbb{E}[X^4]-4,mathbb{E}[X^3],a+6,mathbb{E}[X^2],a^2-4,mathbb{E}[X],a^3+a^4,.$$
Thus,
$$f'(a)=-4,mathbb{E}[X^3]+12,mathbb{E}[X^2],a-12,mathbb{E}[X],a^2+4,a^3,.$$
Therefore, if $a=mathbb{E}[X]$ minimizes $f$, then $f'big(mathbb{E}[X]big)=0$, and so
$$-mathbb{E}[X^3]+3,mathbb{E}[X^2],mathbb{E}[X]-2,big(mathbb{E}[X]big)^3=0,.tag{*}$$
Hence, if (*) does not hold, then you have found a counterexample, say, a random variable $X$ with $mathbb{E}[X]=0$ but $mathbb{E}[X^3]neq 0$.




Take $X$ to be the discrete random variable with values $-1$ and $2$ such that $$mathbb{P}[X=-1]=frac{2}{3}text{ and }mathbb{P}[X=2]=frac13,.$$ Then, $$mathbb{E}[X]=0text{ whereas }mathbb{E}[X^3]=2neq 0,.$$ Indeed, $f(a)=6-8a+12a^2+a^4$ so $f(a)$ is minimized when $$a=18left(sqrt[3]{2}-1right)neq 0=mathbb{E}[X],.$$







share|cite|improve this answer











$endgroup$



Expanding $mathbb{E}left[(X-a)^4right]$ yields
$$f(a):=mathbb{E}left[(X-a)^4right]=mathbb{E}[X^4]-4,mathbb{E}[X^3],a+6,mathbb{E}[X^2],a^2-4,mathbb{E}[X],a^3+a^4,.$$
Thus,
$$f'(a)=-4,mathbb{E}[X^3]+12,mathbb{E}[X^2],a-12,mathbb{E}[X],a^2+4,a^3,.$$
Therefore, if $a=mathbb{E}[X]$ minimizes $f$, then $f'big(mathbb{E}[X]big)=0$, and so
$$-mathbb{E}[X^3]+3,mathbb{E}[X^2],mathbb{E}[X]-2,big(mathbb{E}[X]big)^3=0,.tag{*}$$
Hence, if (*) does not hold, then you have found a counterexample, say, a random variable $X$ with $mathbb{E}[X]=0$ but $mathbb{E}[X^3]neq 0$.




Take $X$ to be the discrete random variable with values $-1$ and $2$ such that $$mathbb{P}[X=-1]=frac{2}{3}text{ and }mathbb{P}[X=2]=frac13,.$$ Then, $$mathbb{E}[X]=0text{ whereas }mathbb{E}[X^3]=2neq 0,.$$ Indeed, $f(a)=6-8a+12a^2+a^4$ so $f(a)$ is minimized when $$a=18left(sqrt[3]{2}-1right)neq 0=mathbb{E}[X],.$$








share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 14 '18 at 21:47

























answered Dec 14 '18 at 21:14









BatominovskiBatominovski

33.1k33293




33.1k33293








  • 1




    $begingroup$
    You can take the derivative first and get $4E(X-a)^3)$, then expand out.
    $endgroup$
    – Acccumulation
    Dec 14 '18 at 21:36










  • $begingroup$
    Without loss of generality we can reduce the OP's conjecture to $Bbb E[(X-a)^4]$ being minimised at $a=0$ if $Bbb E[X]=0$, so (*) becomes $Bbb E[X^3]=0$ (provided $X$ has finite variance), which won't hold for a skewed distribution.
    $endgroup$
    – J.G.
    Dec 14 '18 at 22:22














  • 1




    $begingroup$
    You can take the derivative first and get $4E(X-a)^3)$, then expand out.
    $endgroup$
    – Acccumulation
    Dec 14 '18 at 21:36










  • $begingroup$
    Without loss of generality we can reduce the OP's conjecture to $Bbb E[(X-a)^4]$ being minimised at $a=0$ if $Bbb E[X]=0$, so (*) becomes $Bbb E[X^3]=0$ (provided $X$ has finite variance), which won't hold for a skewed distribution.
    $endgroup$
    – J.G.
    Dec 14 '18 at 22:22








1




1




$begingroup$
You can take the derivative first and get $4E(X-a)^3)$, then expand out.
$endgroup$
– Acccumulation
Dec 14 '18 at 21:36




$begingroup$
You can take the derivative first and get $4E(X-a)^3)$, then expand out.
$endgroup$
– Acccumulation
Dec 14 '18 at 21:36












$begingroup$
Without loss of generality we can reduce the OP's conjecture to $Bbb E[(X-a)^4]$ being minimised at $a=0$ if $Bbb E[X]=0$, so (*) becomes $Bbb E[X^3]=0$ (provided $X$ has finite variance), which won't hold for a skewed distribution.
$endgroup$
– J.G.
Dec 14 '18 at 22:22




$begingroup$
Without loss of generality we can reduce the OP's conjecture to $Bbb E[(X-a)^4]$ being minimised at $a=0$ if $Bbb E[X]=0$, so (*) becomes $Bbb E[X^3]=0$ (provided $X$ has finite variance), which won't hold for a skewed distribution.
$endgroup$
– J.G.
Dec 14 '18 at 22:22











0












$begingroup$

For a counter example take a look at a random variable with $Xin{1,-2}$ with probabilities $$P(X=+1) =frac{2}{3}, qquad P(X=-2) = frac{1}{3},.$$



Now, we can see that
$$E(X) =frac{2}{3} cdot 1 + frac{1}{3}cdot(-2) = 0,.$$



However,
$$E((X-a)^4) = frac{2}{3} cdot (1-a)^4 + frac{1}{3}cdot(-2-a)^4,.$$



We have
$$ frac{81}{16}= E((X+tfrac12)^4) < E(X^4) = 6$$
providing a counterexample.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    We both came up with very similar counterexamples.
    $endgroup$
    – Batominovski
    Dec 14 '18 at 21:19


















0












$begingroup$

For a counter example take a look at a random variable with $Xin{1,-2}$ with probabilities $$P(X=+1) =frac{2}{3}, qquad P(X=-2) = frac{1}{3},.$$



Now, we can see that
$$E(X) =frac{2}{3} cdot 1 + frac{1}{3}cdot(-2) = 0,.$$



However,
$$E((X-a)^4) = frac{2}{3} cdot (1-a)^4 + frac{1}{3}cdot(-2-a)^4,.$$



We have
$$ frac{81}{16}= E((X+tfrac12)^4) < E(X^4) = 6$$
providing a counterexample.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    We both came up with very similar counterexamples.
    $endgroup$
    – Batominovski
    Dec 14 '18 at 21:19
















0












0








0





$begingroup$

For a counter example take a look at a random variable with $Xin{1,-2}$ with probabilities $$P(X=+1) =frac{2}{3}, qquad P(X=-2) = frac{1}{3},.$$



Now, we can see that
$$E(X) =frac{2}{3} cdot 1 + frac{1}{3}cdot(-2) = 0,.$$



However,
$$E((X-a)^4) = frac{2}{3} cdot (1-a)^4 + frac{1}{3}cdot(-2-a)^4,.$$



We have
$$ frac{81}{16}= E((X+tfrac12)^4) < E(X^4) = 6$$
providing a counterexample.






share|cite|improve this answer











$endgroup$



For a counter example take a look at a random variable with $Xin{1,-2}$ with probabilities $$P(X=+1) =frac{2}{3}, qquad P(X=-2) = frac{1}{3},.$$



Now, we can see that
$$E(X) =frac{2}{3} cdot 1 + frac{1}{3}cdot(-2) = 0,.$$



However,
$$E((X-a)^4) = frac{2}{3} cdot (1-a)^4 + frac{1}{3}cdot(-2-a)^4,.$$



We have
$$ frac{81}{16}= E((X+tfrac12)^4) < E(X^4) = 6$$
providing a counterexample.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 14 '18 at 21:20

























answered Dec 14 '18 at 21:19









FabianFabian

19.8k3774




19.8k3774












  • $begingroup$
    We both came up with very similar counterexamples.
    $endgroup$
    – Batominovski
    Dec 14 '18 at 21:19




















  • $begingroup$
    We both came up with very similar counterexamples.
    $endgroup$
    – Batominovski
    Dec 14 '18 at 21:19


















$begingroup$
We both came up with very similar counterexamples.
$endgroup$
– Batominovski
Dec 14 '18 at 21:19






$begingroup$
We both came up with very similar counterexamples.
$endgroup$
– Batominovski
Dec 14 '18 at 21:19




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039880%2fprove-disprove-that-e-bigx%25e2%2588%2592a4-big-is-minimized-when-a-ex%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten