Evaluating $int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$












6












$begingroup$



How can we find the value of $$int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$$ using elementary methods?




With some help of calculator I get the result: $displaystyle{frac3{128}pi^3-frac9{32}piln^22}$.



Thoughts of this integral

Since I have asked this question and Pisco gave a brilliant answer, I tried to convert $$I_1=int_0^1arctan xln(1+x)frac{dx}xtext{ and }I_2=int_0^1arctan xln(1+x)frac{dx}{1+x}$$ into the form of integral Pisco gave.

Integrating by parts to the second integral converts $I_2$ into $int_0^1frac{ln^2(1+x)}{1+x^2}dx$.

But for $I_1$? Integrating by parts gives a dilog function and I tried substitution $x=frac{1-t}{1+t}$ and got $$frac{lnfrac{2}{t+1} arctanfrac{1-t}{1+t}}{1-t^2}$$ which is not what I want.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Just curious, but why do you expect there to be an elementary method?
    $endgroup$
    – Zacky
    Dec 28 '18 at 10:15










  • $begingroup$
    @Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
    $endgroup$
    – Kemono Chen
    Dec 28 '18 at 10:23
















6












$begingroup$



How can we find the value of $$int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$$ using elementary methods?




With some help of calculator I get the result: $displaystyle{frac3{128}pi^3-frac9{32}piln^22}$.



Thoughts of this integral

Since I have asked this question and Pisco gave a brilliant answer, I tried to convert $$I_1=int_0^1arctan xln(1+x)frac{dx}xtext{ and }I_2=int_0^1arctan xln(1+x)frac{dx}{1+x}$$ into the form of integral Pisco gave.

Integrating by parts to the second integral converts $I_2$ into $int_0^1frac{ln^2(1+x)}{1+x^2}dx$.

But for $I_1$? Integrating by parts gives a dilog function and I tried substitution $x=frac{1-t}{1+t}$ and got $$frac{lnfrac{2}{t+1} arctanfrac{1-t}{1+t}}{1-t^2}$$ which is not what I want.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Just curious, but why do you expect there to be an elementary method?
    $endgroup$
    – Zacky
    Dec 28 '18 at 10:15










  • $begingroup$
    @Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
    $endgroup$
    – Kemono Chen
    Dec 28 '18 at 10:23














6












6








6


3



$begingroup$



How can we find the value of $$int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$$ using elementary methods?




With some help of calculator I get the result: $displaystyle{frac3{128}pi^3-frac9{32}piln^22}$.



Thoughts of this integral

Since I have asked this question and Pisco gave a brilliant answer, I tried to convert $$I_1=int_0^1arctan xln(1+x)frac{dx}xtext{ and }I_2=int_0^1arctan xln(1+x)frac{dx}{1+x}$$ into the form of integral Pisco gave.

Integrating by parts to the second integral converts $I_2$ into $int_0^1frac{ln^2(1+x)}{1+x^2}dx$.

But for $I_1$? Integrating by parts gives a dilog function and I tried substitution $x=frac{1-t}{1+t}$ and got $$frac{lnfrac{2}{t+1} arctanfrac{1-t}{1+t}}{1-t^2}$$ which is not what I want.










share|cite|improve this question











$endgroup$





How can we find the value of $$int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$$ using elementary methods?




With some help of calculator I get the result: $displaystyle{frac3{128}pi^3-frac9{32}piln^22}$.



Thoughts of this integral

Since I have asked this question and Pisco gave a brilliant answer, I tried to convert $$I_1=int_0^1arctan xln(1+x)frac{dx}xtext{ and }I_2=int_0^1arctan xln(1+x)frac{dx}{1+x}$$ into the form of integral Pisco gave.

Integrating by parts to the second integral converts $I_2$ into $int_0^1frac{ln^2(1+x)}{1+x^2}dx$.

But for $I_1$? Integrating by parts gives a dilog function and I tried substitution $x=frac{1-t}{1+t}$ and got $$frac{lnfrac{2}{t+1} arctanfrac{1-t}{1+t}}{1-t^2}$$ which is not what I want.







calculus integration definite-integrals logarithms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 28 '18 at 18:35









Zacky

7,87511062




7,87511062










asked Dec 28 '18 at 10:01









Kemono ChenKemono Chen

3,3161844




3,3161844








  • 1




    $begingroup$
    Just curious, but why do you expect there to be an elementary method?
    $endgroup$
    – Zacky
    Dec 28 '18 at 10:15










  • $begingroup$
    @Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
    $endgroup$
    – Kemono Chen
    Dec 28 '18 at 10:23














  • 1




    $begingroup$
    Just curious, but why do you expect there to be an elementary method?
    $endgroup$
    – Zacky
    Dec 28 '18 at 10:15










  • $begingroup$
    @Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
    $endgroup$
    – Kemono Chen
    Dec 28 '18 at 10:23








1




1




$begingroup$
Just curious, but why do you expect there to be an elementary method?
$endgroup$
– Zacky
Dec 28 '18 at 10:15




$begingroup$
Just curious, but why do you expect there to be an elementary method?
$endgroup$
– Zacky
Dec 28 '18 at 10:15












$begingroup$
@Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
$endgroup$
– Kemono Chen
Dec 28 '18 at 10:23




$begingroup$
@Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
$endgroup$
– Kemono Chen
Dec 28 '18 at 10:23










3 Answers
3






active

oldest

votes


















3












$begingroup$

Here is an elementary approach, although it turned into a crossover with FDP's answer.



First note that from here we have:
$$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
$$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
Back to the original integral, we have:
$$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
$$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
$$Rightarrow I=-3(B+2A+J)quad quad (1)$$
Where I kept the notation like in FDP's answer. Namely:
$$begin{align*}
displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
end{align*}$$

Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
$$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
$$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
Now plugging $(2)$ and $(3)$ in $(1)$ yields:
$$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
$$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
Credits to FDP for his amazing answer there!






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    NOT A FULL SOLUTION BUT A START:



    Here you have:



    begin{equation}
    I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
    end{equation}



    Consider using Feynman's Trick with two parameters:



    begin{equation}
    I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
    end{equation}



    Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:



    begin{equation}
    frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
    end{equation}



    From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Yes, you are correct! thanks for that. I will edit now.
      $endgroup$
      – user150203
      Dec 28 '18 at 11:31






    • 1




      $begingroup$
      I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
      $endgroup$
      – user150203
      Dec 28 '18 at 11:39





















    1












    $begingroup$

    For $I_1$, by integration by parts,
    begin{eqnarray*}
    I_1&=&int_0^1arctan xln(1+x)dln x\
    &=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
    &=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
    &=&-I_3-I_4.
    end{eqnarray*}

    Here $I_3$ and $I_4$ are
    $$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
    From here,
    $$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
    From here,
    $$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
    $G$ is the Catalan's constant.






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054741%2fevaluating-int-01-arctan-x-ln1x-left-frac2x-frac31x-rightdx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Here is an elementary approach, although it turned into a crossover with FDP's answer.



      First note that from here we have:
      $$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
      $$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
      Back to the original integral, we have:
      $$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
      $$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
      $$Rightarrow I=-3(B+2A+J)quad quad (1)$$
      Where I kept the notation like in FDP's answer. Namely:
      $$begin{align*}
      displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
      displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
      displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
      end{align*}$$

      Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
      $$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
      $$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
      Now plugging $(2)$ and $(3)$ in $(1)$ yields:
      $$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
      $$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
      Credits to FDP for his amazing answer there!






      share|cite|improve this answer











      $endgroup$


















        3












        $begingroup$

        Here is an elementary approach, although it turned into a crossover with FDP's answer.



        First note that from here we have:
        $$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
        $$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
        Back to the original integral, we have:
        $$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
        $$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
        $$Rightarrow I=-3(B+2A+J)quad quad (1)$$
        Where I kept the notation like in FDP's answer. Namely:
        $$begin{align*}
        displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
        displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
        displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
        end{align*}$$

        Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
        $$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
        $$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
        Now plugging $(2)$ and $(3)$ in $(1)$ yields:
        $$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
        $$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
        Credits to FDP for his amazing answer there!






        share|cite|improve this answer











        $endgroup$
















          3












          3








          3





          $begingroup$

          Here is an elementary approach, although it turned into a crossover with FDP's answer.



          First note that from here we have:
          $$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
          $$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
          Back to the original integral, we have:
          $$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
          $$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
          $$Rightarrow I=-3(B+2A+J)quad quad (1)$$
          Where I kept the notation like in FDP's answer. Namely:
          $$begin{align*}
          displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
          displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
          displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
          end{align*}$$

          Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
          $$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
          $$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
          Now plugging $(2)$ and $(3)$ in $(1)$ yields:
          $$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
          $$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
          Credits to FDP for his amazing answer there!






          share|cite|improve this answer











          $endgroup$



          Here is an elementary approach, although it turned into a crossover with FDP's answer.



          First note that from here we have:
          $$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
          $$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
          Back to the original integral, we have:
          $$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
          $$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
          $$Rightarrow I=-3(B+2A+J)quad quad (1)$$
          Where I kept the notation like in FDP's answer. Namely:
          $$begin{align*}
          displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
          displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
          displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
          end{align*}$$

          Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
          $$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
          $$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
          Now plugging $(2)$ and $(3)$ in $(1)$ yields:
          $$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
          $$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
          Credits to FDP for his amazing answer there!







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 28 '18 at 18:45

























          answered Dec 28 '18 at 18:11









          ZackyZacky

          7,87511062




          7,87511062























              1












              $begingroup$

              NOT A FULL SOLUTION BUT A START:



              Here you have:



              begin{equation}
              I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
              end{equation}



              Consider using Feynman's Trick with two parameters:



              begin{equation}
              I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
              end{equation}



              Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:



              begin{equation}
              frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
              end{equation}



              From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Yes, you are correct! thanks for that. I will edit now.
                $endgroup$
                – user150203
                Dec 28 '18 at 11:31






              • 1




                $begingroup$
                I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
                $endgroup$
                – user150203
                Dec 28 '18 at 11:39


















              1












              $begingroup$

              NOT A FULL SOLUTION BUT A START:



              Here you have:



              begin{equation}
              I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
              end{equation}



              Consider using Feynman's Trick with two parameters:



              begin{equation}
              I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
              end{equation}



              Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:



              begin{equation}
              frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
              end{equation}



              From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Yes, you are correct! thanks for that. I will edit now.
                $endgroup$
                – user150203
                Dec 28 '18 at 11:31






              • 1




                $begingroup$
                I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
                $endgroup$
                – user150203
                Dec 28 '18 at 11:39
















              1












              1








              1





              $begingroup$

              NOT A FULL SOLUTION BUT A START:



              Here you have:



              begin{equation}
              I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
              end{equation}



              Consider using Feynman's Trick with two parameters:



              begin{equation}
              I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
              end{equation}



              Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:



              begin{equation}
              frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
              end{equation}



              From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).






              share|cite|improve this answer











              $endgroup$



              NOT A FULL SOLUTION BUT A START:



              Here you have:



              begin{equation}
              I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
              end{equation}



              Consider using Feynman's Trick with two parameters:



              begin{equation}
              I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
              end{equation}



              Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:



              begin{equation}
              frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
              end{equation}



              From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 28 '18 at 11:33

























              answered Dec 28 '18 at 10:35







              user150203



















              • $begingroup$
                Yes, you are correct! thanks for that. I will edit now.
                $endgroup$
                – user150203
                Dec 28 '18 at 11:31






              • 1




                $begingroup$
                I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
                $endgroup$
                – user150203
                Dec 28 '18 at 11:39




















              • $begingroup$
                Yes, you are correct! thanks for that. I will edit now.
                $endgroup$
                – user150203
                Dec 28 '18 at 11:31






              • 1




                $begingroup$
                I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
                $endgroup$
                – user150203
                Dec 28 '18 at 11:39


















              $begingroup$
              Yes, you are correct! thanks for that. I will edit now.
              $endgroup$
              – user150203
              Dec 28 '18 at 11:31




              $begingroup$
              Yes, you are correct! thanks for that. I will edit now.
              $endgroup$
              – user150203
              Dec 28 '18 at 11:31




              1




              1




              $begingroup$
              I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
              $endgroup$
              – user150203
              Dec 28 '18 at 11:39






              $begingroup$
              I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
              $endgroup$
              – user150203
              Dec 28 '18 at 11:39













              1












              $begingroup$

              For $I_1$, by integration by parts,
              begin{eqnarray*}
              I_1&=&int_0^1arctan xln(1+x)dln x\
              &=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
              &=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
              &=&-I_3-I_4.
              end{eqnarray*}

              Here $I_3$ and $I_4$ are
              $$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
              From here,
              $$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
              From here,
              $$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
              $G$ is the Catalan's constant.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                For $I_1$, by integration by parts,
                begin{eqnarray*}
                I_1&=&int_0^1arctan xln(1+x)dln x\
                &=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
                &=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
                &=&-I_3-I_4.
                end{eqnarray*}

                Here $I_3$ and $I_4$ are
                $$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
                From here,
                $$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
                From here,
                $$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
                $G$ is the Catalan's constant.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  For $I_1$, by integration by parts,
                  begin{eqnarray*}
                  I_1&=&int_0^1arctan xln(1+x)dln x\
                  &=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
                  &=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
                  &=&-I_3-I_4.
                  end{eqnarray*}

                  Here $I_3$ and $I_4$ are
                  $$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
                  From here,
                  $$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
                  From here,
                  $$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
                  $G$ is the Catalan's constant.






                  share|cite|improve this answer









                  $endgroup$



                  For $I_1$, by integration by parts,
                  begin{eqnarray*}
                  I_1&=&int_0^1arctan xln(1+x)dln x\
                  &=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
                  &=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
                  &=&-I_3-I_4.
                  end{eqnarray*}

                  Here $I_3$ and $I_4$ are
                  $$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
                  From here,
                  $$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
                  From here,
                  $$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
                  $G$ is the Catalan's constant.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 28 '18 at 15:59









                  xpaulxpaul

                  23.5k24655




                  23.5k24655






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054741%2fevaluating-int-01-arctan-x-ln1x-left-frac2x-frac31x-rightdx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten