Solving differential equation describing motion in a pendulum
$begingroup$
I've been looking at Simple Harmonic Motion in particularly the period of a pendulum. This may seem like physics but my question is tailored towards mathematics. The differential equation is:
$${{d^2theta}over dt^2}+sintheta=0$$
Using the small angle approximation it is found that $T={2pi}sqrt{Lover g}$.
Is it possible to solve the differential equation without using the small angle approximation? If so, what is the actual period of a pendulum?
ordinary-differential-equations mathematical-physics
$endgroup$
add a comment |
$begingroup$
I've been looking at Simple Harmonic Motion in particularly the period of a pendulum. This may seem like physics but my question is tailored towards mathematics. The differential equation is:
$${{d^2theta}over dt^2}+sintheta=0$$
Using the small angle approximation it is found that $T={2pi}sqrt{Lover g}$.
Is it possible to solve the differential equation without using the small angle approximation? If so, what is the actual period of a pendulum?
ordinary-differential-equations mathematical-physics
$endgroup$
$begingroup$
I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
$endgroup$
– James Hanson
Jan 31 '16 at 6:38
$begingroup$
I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
$endgroup$
– Nikunj
Jan 31 '16 at 6:45
$begingroup$
Yeah essentially it will all boil down to elliptic integrals.
$endgroup$
– Triatticus
Jan 31 '16 at 7:18
add a comment |
$begingroup$
I've been looking at Simple Harmonic Motion in particularly the period of a pendulum. This may seem like physics but my question is tailored towards mathematics. The differential equation is:
$${{d^2theta}over dt^2}+sintheta=0$$
Using the small angle approximation it is found that $T={2pi}sqrt{Lover g}$.
Is it possible to solve the differential equation without using the small angle approximation? If so, what is the actual period of a pendulum?
ordinary-differential-equations mathematical-physics
$endgroup$
I've been looking at Simple Harmonic Motion in particularly the period of a pendulum. This may seem like physics but my question is tailored towards mathematics. The differential equation is:
$${{d^2theta}over dt^2}+sintheta=0$$
Using the small angle approximation it is found that $T={2pi}sqrt{Lover g}$.
Is it possible to solve the differential equation without using the small angle approximation? If so, what is the actual period of a pendulum?
ordinary-differential-equations mathematical-physics
ordinary-differential-equations mathematical-physics
asked Jan 31 '16 at 6:35
JackJack
934
934
$begingroup$
I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
$endgroup$
– James Hanson
Jan 31 '16 at 6:38
$begingroup$
I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
$endgroup$
– Nikunj
Jan 31 '16 at 6:45
$begingroup$
Yeah essentially it will all boil down to elliptic integrals.
$endgroup$
– Triatticus
Jan 31 '16 at 7:18
add a comment |
$begingroup$
I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
$endgroup$
– James Hanson
Jan 31 '16 at 6:38
$begingroup$
I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
$endgroup$
– Nikunj
Jan 31 '16 at 6:45
$begingroup$
Yeah essentially it will all boil down to elliptic integrals.
$endgroup$
– Triatticus
Jan 31 '16 at 7:18
$begingroup$
I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
$endgroup$
– James Hanson
Jan 31 '16 at 6:38
$begingroup$
I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
$endgroup$
– James Hanson
Jan 31 '16 at 6:38
$begingroup$
I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
$endgroup$
– Nikunj
Jan 31 '16 at 6:45
$begingroup$
I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
$endgroup$
– Nikunj
Jan 31 '16 at 6:45
$begingroup$
Yeah essentially it will all boil down to elliptic integrals.
$endgroup$
– Triatticus
Jan 31 '16 at 7:18
$begingroup$
Yeah essentially it will all boil down to elliptic integrals.
$endgroup$
– Triatticus
Jan 31 '16 at 7:18
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.
begin{align*}
ddot{theta}+omega^{2} sin theta &= 0 \
omega &= sqrt{frac{mgell}{I}} \
k &= sqrt{frac{E}{2mg ell}}
end{align*}
$$
begin{array}{|c|c|c|c|} hline
& k < 1 & k = 1 & k > 1 \ hline
& & & \
displaystyle sin frac{theta}{2} &
koperatorname{sn} (omega t,k) &
tanh omega t &
displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
& & &\
theta &
2sin^{-1} (koperatorname{sn} (omega t,k)) &
4tan^{-1} e^{omega t}-pi &
displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
& & &\
T &
displaystyle frac{4K(k)}{omega} &
infty &
displaystyle frac{2K(frac{1}{k})}{komega} \
& & &\ hline
end{array}$$
For small bob, $Iapprox mell^{2}$.
For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.
For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
left(
1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
right)$
A plot of $T$ vs. $k$ with $omega=1$ is shown below
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1634148%2fsolving-differential-equation-describing-motion-in-a-pendulum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.
begin{align*}
ddot{theta}+omega^{2} sin theta &= 0 \
omega &= sqrt{frac{mgell}{I}} \
k &= sqrt{frac{E}{2mg ell}}
end{align*}
$$
begin{array}{|c|c|c|c|} hline
& k < 1 & k = 1 & k > 1 \ hline
& & & \
displaystyle sin frac{theta}{2} &
koperatorname{sn} (omega t,k) &
tanh omega t &
displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
& & &\
theta &
2sin^{-1} (koperatorname{sn} (omega t,k)) &
4tan^{-1} e^{omega t}-pi &
displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
& & &\
T &
displaystyle frac{4K(k)}{omega} &
infty &
displaystyle frac{2K(frac{1}{k})}{komega} \
& & &\ hline
end{array}$$
For small bob, $Iapprox mell^{2}$.
For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.
For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
left(
1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
right)$
A plot of $T$ vs. $k$ with $omega=1$ is shown below
$endgroup$
add a comment |
$begingroup$
Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.
begin{align*}
ddot{theta}+omega^{2} sin theta &= 0 \
omega &= sqrt{frac{mgell}{I}} \
k &= sqrt{frac{E}{2mg ell}}
end{align*}
$$
begin{array}{|c|c|c|c|} hline
& k < 1 & k = 1 & k > 1 \ hline
& & & \
displaystyle sin frac{theta}{2} &
koperatorname{sn} (omega t,k) &
tanh omega t &
displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
& & &\
theta &
2sin^{-1} (koperatorname{sn} (omega t,k)) &
4tan^{-1} e^{omega t}-pi &
displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
& & &\
T &
displaystyle frac{4K(k)}{omega} &
infty &
displaystyle frac{2K(frac{1}{k})}{komega} \
& & &\ hline
end{array}$$
For small bob, $Iapprox mell^{2}$.
For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.
For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
left(
1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
right)$
A plot of $T$ vs. $k$ with $omega=1$ is shown below
$endgroup$
add a comment |
$begingroup$
Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.
begin{align*}
ddot{theta}+omega^{2} sin theta &= 0 \
omega &= sqrt{frac{mgell}{I}} \
k &= sqrt{frac{E}{2mg ell}}
end{align*}
$$
begin{array}{|c|c|c|c|} hline
& k < 1 & k = 1 & k > 1 \ hline
& & & \
displaystyle sin frac{theta}{2} &
koperatorname{sn} (omega t,k) &
tanh omega t &
displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
& & &\
theta &
2sin^{-1} (koperatorname{sn} (omega t,k)) &
4tan^{-1} e^{omega t}-pi &
displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
& & &\
T &
displaystyle frac{4K(k)}{omega} &
infty &
displaystyle frac{2K(frac{1}{k})}{komega} \
& & &\ hline
end{array}$$
For small bob, $Iapprox mell^{2}$.
For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.
For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
left(
1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
right)$
A plot of $T$ vs. $k$ with $omega=1$ is shown below
$endgroup$
Let $ell=$ length measured to the C.G. of the bob, $I=$ moment of inertia of the bob about the end of the string and $E=$ total energy.
begin{align*}
ddot{theta}+omega^{2} sin theta &= 0 \
omega &= sqrt{frac{mgell}{I}} \
k &= sqrt{frac{E}{2mg ell}}
end{align*}
$$
begin{array}{|c|c|c|c|} hline
& k < 1 & k = 1 & k > 1 \ hline
& & & \
displaystyle sin frac{theta}{2} &
koperatorname{sn} (omega t,k) &
tanh omega t &
displaystyle operatorname{sn} left( komega t,frac{1}{k} right) \
& & &\
theta &
2sin^{-1} (koperatorname{sn} (omega t,k)) &
4tan^{-1} e^{omega t}-pi &
displaystyle 2operatorname{am} left( komega t,frac{1}{k} right) \
& & &\
T &
displaystyle frac{4K(k)}{omega} &
infty &
displaystyle frac{2K(frac{1}{k})}{komega} \
& & &\ hline
end{array}$$
For small bob, $Iapprox mell^{2}$.
For $k<1$, amplitude $alpha=2sin^{-1} k$ and $k>1$ it's moving in complete circle.
For $k<<1$, $T=2pi sqrt{frac{I}{m gell}}
left(
1+frac{1}{4} sin^{2} frac{alpha}{2}+ldots
right)$
A plot of $T$ vs. $k$ with $omega=1$ is shown below
edited Jan 16 '18 at 12:55
answered Jan 31 '16 at 7:08
Ng Chung TakNg Chung Tak
14.8k31334
14.8k31334
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1634148%2fsolving-differential-equation-describing-motion-in-a-pendulum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't think there's a nice expression for the trajectory but there's a decently nice formula for the period: en.wikipedia.org/wiki/…
$endgroup$
– James Hanson
Jan 31 '16 at 6:38
$begingroup$
I tried to find the expression for the trajectory, I believe it uses elliptical integrals.
$endgroup$
– Nikunj
Jan 31 '16 at 6:45
$begingroup$
Yeah essentially it will all boil down to elliptic integrals.
$endgroup$
– Triatticus
Jan 31 '16 at 7:18