Densely packed decimal (DPD) to decimal











up vote
17
down vote

favorite
1












Background



Densely packed decimal (DPD) is a way to efficiently store decimal digits in binary. It stores three decimal digits (000 to 999) in 10 bits, which is much more efficient than naive BCD (which stores one digit in 4 bits).



Notations




  • The lowercase alphabets a to i are the bits that are copied to the decimal representation.


  • 0 and 1 are the exact bits in the input or output bit patterns.


  • x bits are ignored in the conversion.


Conversion table



The following is the conversion table from 10 bits of DPD to three decimal digits. Each decimal digit is represented as 4-bit binary (BCD). Both sides are written left to right from the most significant digit to the least.



Bits                 =>  Decimal         (Digit range)
a b c d e f 0 g h i => 0abc 0def 0ghi (0-7) (0-7) (0-7)
a b c d e f 1 0 0 i => 0abc 0def 100i (0–7) (0–7) (8–9)
a b c g h f 1 0 1 i => 0abc 100f 0ghi (0–7) (8–9) (0–7)
g h c d e f 1 1 0 i => 100c 0def 0ghi (8–9) (0–7) (0–7)
g h c 0 0 f 1 1 1 i => 100c 100f 0ghi (8–9) (8–9) (0–7)
d e c 0 1 f 1 1 1 i => 100c 0def 100i (8–9) (0–7) (8–9)
a b c 1 0 f 1 1 1 i => 0abc 100f 100i (0–7) (8–9) (8–9)
x x c 1 1 f 1 1 1 i => 100c 100f 100i (8–9) (8–9) (8–9)


Task



Convert 10 bits of DPD to 3 digits of decimal.



Test cases



DPD           Decimal
0000000101 005
0001100011 063
0001111001 079
0000011010 090
0001011110 098
1010111010 592
0011001101 941
1100111111 879
1110001110 986
0011111111 999
1111111111 999 * Output is same regardless of the `x` bits


Input



The default input format is a list of 10 bits. The bits should follow the exact order above, or the reverse of it. You may choose to use an equivalent string or integer representation instead. Unlike my other challenges, reordering or using nested structures is not allowed.



For the input [1, 1, 0, 0, 0, 1, 0, 1, 0, 0], the following formats are allowed:




  • List of bits: [1, 1, 0, 0, 0, 1, 0, 1, 0, 0]

  • String: "1100010100"

  • Binary integer: 788 or 0b1100010100

  • Decimal integer: 1100010100

  • Reversed: [0, 0, 1, 0, 1, 0, 0, 0, 1, 1] and reversed in any other formats above


The following formats are NOT allowed:




  • Arbitrary reordering of bits: [0, 0, 0, 0, 0, 1, 1, 1, 0, 1]

  • Nested structures: [[1, 1, 0], [0, 0, 1], [0, 1, 0, 0]] or [0b110, 0b001, 0b0100]


Output



The default output format is a list of 3 decimal digits. Each digit should be represented as 0 to 9, either an integer or a character. As in input, you can choose string or integer representation. If you choose integer representation, leading zeroes can be omitted.



Scoring & winning criterion



Standard code-golf rules apply. The shortest program or function in bytes for each language wins.










share|improve this question


























    up vote
    17
    down vote

    favorite
    1












    Background



    Densely packed decimal (DPD) is a way to efficiently store decimal digits in binary. It stores three decimal digits (000 to 999) in 10 bits, which is much more efficient than naive BCD (which stores one digit in 4 bits).



    Notations




    • The lowercase alphabets a to i are the bits that are copied to the decimal representation.


    • 0 and 1 are the exact bits in the input or output bit patterns.


    • x bits are ignored in the conversion.


    Conversion table



    The following is the conversion table from 10 bits of DPD to three decimal digits. Each decimal digit is represented as 4-bit binary (BCD). Both sides are written left to right from the most significant digit to the least.



    Bits                 =>  Decimal         (Digit range)
    a b c d e f 0 g h i => 0abc 0def 0ghi (0-7) (0-7) (0-7)
    a b c d e f 1 0 0 i => 0abc 0def 100i (0–7) (0–7) (8–9)
    a b c g h f 1 0 1 i => 0abc 100f 0ghi (0–7) (8–9) (0–7)
    g h c d e f 1 1 0 i => 100c 0def 0ghi (8–9) (0–7) (0–7)
    g h c 0 0 f 1 1 1 i => 100c 100f 0ghi (8–9) (8–9) (0–7)
    d e c 0 1 f 1 1 1 i => 100c 0def 100i (8–9) (0–7) (8–9)
    a b c 1 0 f 1 1 1 i => 0abc 100f 100i (0–7) (8–9) (8–9)
    x x c 1 1 f 1 1 1 i => 100c 100f 100i (8–9) (8–9) (8–9)


    Task



    Convert 10 bits of DPD to 3 digits of decimal.



    Test cases



    DPD           Decimal
    0000000101 005
    0001100011 063
    0001111001 079
    0000011010 090
    0001011110 098
    1010111010 592
    0011001101 941
    1100111111 879
    1110001110 986
    0011111111 999
    1111111111 999 * Output is same regardless of the `x` bits


    Input



    The default input format is a list of 10 bits. The bits should follow the exact order above, or the reverse of it. You may choose to use an equivalent string or integer representation instead. Unlike my other challenges, reordering or using nested structures is not allowed.



    For the input [1, 1, 0, 0, 0, 1, 0, 1, 0, 0], the following formats are allowed:




    • List of bits: [1, 1, 0, 0, 0, 1, 0, 1, 0, 0]

    • String: "1100010100"

    • Binary integer: 788 or 0b1100010100

    • Decimal integer: 1100010100

    • Reversed: [0, 0, 1, 0, 1, 0, 0, 0, 1, 1] and reversed in any other formats above


    The following formats are NOT allowed:




    • Arbitrary reordering of bits: [0, 0, 0, 0, 0, 1, 1, 1, 0, 1]

    • Nested structures: [[1, 1, 0], [0, 0, 1], [0, 1, 0, 0]] or [0b110, 0b001, 0b0100]


    Output



    The default output format is a list of 3 decimal digits. Each digit should be represented as 0 to 9, either an integer or a character. As in input, you can choose string or integer representation. If you choose integer representation, leading zeroes can be omitted.



    Scoring & winning criterion



    Standard code-golf rules apply. The shortest program or function in bytes for each language wins.










    share|improve this question
























      up vote
      17
      down vote

      favorite
      1









      up vote
      17
      down vote

      favorite
      1






      1





      Background



      Densely packed decimal (DPD) is a way to efficiently store decimal digits in binary. It stores three decimal digits (000 to 999) in 10 bits, which is much more efficient than naive BCD (which stores one digit in 4 bits).



      Notations




      • The lowercase alphabets a to i are the bits that are copied to the decimal representation.


      • 0 and 1 are the exact bits in the input or output bit patterns.


      • x bits are ignored in the conversion.


      Conversion table



      The following is the conversion table from 10 bits of DPD to three decimal digits. Each decimal digit is represented as 4-bit binary (BCD). Both sides are written left to right from the most significant digit to the least.



      Bits                 =>  Decimal         (Digit range)
      a b c d e f 0 g h i => 0abc 0def 0ghi (0-7) (0-7) (0-7)
      a b c d e f 1 0 0 i => 0abc 0def 100i (0–7) (0–7) (8–9)
      a b c g h f 1 0 1 i => 0abc 100f 0ghi (0–7) (8–9) (0–7)
      g h c d e f 1 1 0 i => 100c 0def 0ghi (8–9) (0–7) (0–7)
      g h c 0 0 f 1 1 1 i => 100c 100f 0ghi (8–9) (8–9) (0–7)
      d e c 0 1 f 1 1 1 i => 100c 0def 100i (8–9) (0–7) (8–9)
      a b c 1 0 f 1 1 1 i => 0abc 100f 100i (0–7) (8–9) (8–9)
      x x c 1 1 f 1 1 1 i => 100c 100f 100i (8–9) (8–9) (8–9)


      Task



      Convert 10 bits of DPD to 3 digits of decimal.



      Test cases



      DPD           Decimal
      0000000101 005
      0001100011 063
      0001111001 079
      0000011010 090
      0001011110 098
      1010111010 592
      0011001101 941
      1100111111 879
      1110001110 986
      0011111111 999
      1111111111 999 * Output is same regardless of the `x` bits


      Input



      The default input format is a list of 10 bits. The bits should follow the exact order above, or the reverse of it. You may choose to use an equivalent string or integer representation instead. Unlike my other challenges, reordering or using nested structures is not allowed.



      For the input [1, 1, 0, 0, 0, 1, 0, 1, 0, 0], the following formats are allowed:




      • List of bits: [1, 1, 0, 0, 0, 1, 0, 1, 0, 0]

      • String: "1100010100"

      • Binary integer: 788 or 0b1100010100

      • Decimal integer: 1100010100

      • Reversed: [0, 0, 1, 0, 1, 0, 0, 0, 1, 1] and reversed in any other formats above


      The following formats are NOT allowed:




      • Arbitrary reordering of bits: [0, 0, 0, 0, 0, 1, 1, 1, 0, 1]

      • Nested structures: [[1, 1, 0], [0, 0, 1], [0, 1, 0, 0]] or [0b110, 0b001, 0b0100]


      Output



      The default output format is a list of 3 decimal digits. Each digit should be represented as 0 to 9, either an integer or a character. As in input, you can choose string or integer representation. If you choose integer representation, leading zeroes can be omitted.



      Scoring & winning criterion



      Standard code-golf rules apply. The shortest program or function in bytes for each language wins.










      share|improve this question













      Background



      Densely packed decimal (DPD) is a way to efficiently store decimal digits in binary. It stores three decimal digits (000 to 999) in 10 bits, which is much more efficient than naive BCD (which stores one digit in 4 bits).



      Notations




      • The lowercase alphabets a to i are the bits that are copied to the decimal representation.


      • 0 and 1 are the exact bits in the input or output bit patterns.


      • x bits are ignored in the conversion.


      Conversion table



      The following is the conversion table from 10 bits of DPD to three decimal digits. Each decimal digit is represented as 4-bit binary (BCD). Both sides are written left to right from the most significant digit to the least.



      Bits                 =>  Decimal         (Digit range)
      a b c d e f 0 g h i => 0abc 0def 0ghi (0-7) (0-7) (0-7)
      a b c d e f 1 0 0 i => 0abc 0def 100i (0–7) (0–7) (8–9)
      a b c g h f 1 0 1 i => 0abc 100f 0ghi (0–7) (8–9) (0–7)
      g h c d e f 1 1 0 i => 100c 0def 0ghi (8–9) (0–7) (0–7)
      g h c 0 0 f 1 1 1 i => 100c 100f 0ghi (8–9) (8–9) (0–7)
      d e c 0 1 f 1 1 1 i => 100c 0def 100i (8–9) (0–7) (8–9)
      a b c 1 0 f 1 1 1 i => 0abc 100f 100i (0–7) (8–9) (8–9)
      x x c 1 1 f 1 1 1 i => 100c 100f 100i (8–9) (8–9) (8–9)


      Task



      Convert 10 bits of DPD to 3 digits of decimal.



      Test cases



      DPD           Decimal
      0000000101 005
      0001100011 063
      0001111001 079
      0000011010 090
      0001011110 098
      1010111010 592
      0011001101 941
      1100111111 879
      1110001110 986
      0011111111 999
      1111111111 999 * Output is same regardless of the `x` bits


      Input



      The default input format is a list of 10 bits. The bits should follow the exact order above, or the reverse of it. You may choose to use an equivalent string or integer representation instead. Unlike my other challenges, reordering or using nested structures is not allowed.



      For the input [1, 1, 0, 0, 0, 1, 0, 1, 0, 0], the following formats are allowed:




      • List of bits: [1, 1, 0, 0, 0, 1, 0, 1, 0, 0]

      • String: "1100010100"

      • Binary integer: 788 or 0b1100010100

      • Decimal integer: 1100010100

      • Reversed: [0, 0, 1, 0, 1, 0, 0, 0, 1, 1] and reversed in any other formats above


      The following formats are NOT allowed:




      • Arbitrary reordering of bits: [0, 0, 0, 0, 0, 1, 1, 1, 0, 1]

      • Nested structures: [[1, 1, 0], [0, 0, 1], [0, 1, 0, 0]] or [0b110, 0b001, 0b0100]


      Output



      The default output format is a list of 3 decimal digits. Each digit should be represented as 0 to 9, either an integer or a character. As in input, you can choose string or integer representation. If you choose integer representation, leading zeroes can be omitted.



      Scoring & winning criterion



      Standard code-golf rules apply. The shortest program or function in bytes for each language wins.







      code-golf binary conversion






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked yesterday









      Bubbler

      5,739757




      5,739757






















          8 Answers
          8






          active

          oldest

          votes

















          up vote
          7
          down vote













          JavaScript (ES6), 118 117 bytes



          Takes input as an integer. Returns an array of three decimal digits.



          n=>[(x=n>>4&7,y=n>>7,p=n/2&7)>5&&p<7|x/2^2?8|y&1:y,(p<7?p-5?x:8:x/2^1?8:y&6)|x&1,(p<5?p*2:p<6?x&6:p<7|x<2?y&6:8)|n&1]


          Try it online!



          How?



          Instead of trying to apply the 'official' algorithm, this code is based on some kind of reverse-engineering of the patterns that can be found in the expected results.



          Given the input integer $n$, we compute:



          $$begin{align}&x=leftlfloorfrac{n}{16}rightrfloor bmod 8\
          &y=leftlfloorfrac{n}{128}rightrfloor\
          &p=leftlfloorfrac{n}{2}rightrfloor bmod 8end{align}
          $$



          Example: first digit (hundreds)



          x     | 0                | 1                | 2                | 3               
          n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
          p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
          ------+------------------+------------------+------------------+-----------------
          y = 0 | 0000000000008888 | 0000000000008888 | 0000000000008888 | 0000000000008888
          y = 1 | 1111111111119999 | 1111111111119999 | 1111111111119999 | 1111111111119999
          y = 2 | 2222222222228888 | 2222222222228888 | 2222222222228888 | 2222222222228888
          y = 3 | 3333333333339999 | 3333333333339999 | 3333333333339999 | 3333333333339999
          y = 4 | 4444444444448888 | 4444444444448888 | 4444444444448888 | 4444444444448888
          y = 5 | 5555555555559999 | 5555555555559999 | 5555555555559999 | 5555555555559999
          y = 6 | 6666666666668888 | 6666666666668888 | 6666666666668888 | 6666666666668888
          y = 7 | 7777777777779999 | 7777777777779999 | 7777777777779999 | 7777777777779999

          x | 4 | 5 | 6 | 7
          n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
          p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
          ------+------------------+------------------+------------------+-----------------
          y = 0 | 0000000000008800 | 0000000000008800 | 0000000000008888 | 0000000000008888
          y = 1 | 1111111111119911 | 1111111111119911 | 1111111111119999 | 1111111111119999
          y = 2 | 2222222222228822 | 2222222222228822 | 2222222222228888 | 2222222222228888
          y = 3 | 3333333333339933 | 3333333333339933 | 3333333333339999 | 3333333333339999
          y = 4 | 4444444444448844 | 4444444444448844 | 4444444444448888 | 4444444444448888
          y = 5 | 5555555555559955 | 5555555555559955 | 5555555555559999 | 5555555555559999
          y = 6 | 6666666666668866 | 6666666666668866 | 6666666666668888 | 6666666666668888
          y = 7 | 7777777777779977 | 7777777777779977 | 7777777777779999 | 7777777777779999


          Algorithm:




          • If $p<6$, we have $d=y$

          • If $p=6$, we have $d=8+(ybmod2)$

          • If $p=7text{ AND }(x<4text{ OR }x>5)$, we have $d=8+(ybmod2)$

          • If $p=7text{ AND }(x=4text{ OR }x=5)$, we have $d=y$


          As JS code:



          p > 5 && p < 7 | x / 2 ^ 2 ? 8 | y & 1 : y





          share|improve this answer






























            up vote
            7
            down vote














            JavaScript (Node.js), 126 119 117 112 bytes





            (a,b,c,d,e,f,g,h,i,j)=>[(g&h&i+(b+=a*4+b,e+=d*4+e)!=5?8:b)+c,(g&i?h+e-3?8:b:e)+f,(g?h-i|h&!e?h?b:e:8:h*4+i*2)+j]


            Try it online!



            -5 bytes thanks @tsh (and 2 by myself) So l can make more effort than I expected.



            -2 more bytes using @tsh's technique!



            -5 bytes thanks @Arnauld



            Input as a list of 10 bits (as 10 arguments), output as a list of 3 digits.






            share|improve this answer



















            • 1




              (!i|!d|e) -> i+l!=5; (d|e|!h) -> h+l!=1
              – tsh
              17 hours ago


















            up vote
            6
            down vote














            C (gcc), 138 129 bytes





            f(w){int t=w/2&55,s=t%8,v=w/16,u=v/8;w=((s<6|t==39?u:8|u%2)*10+v%2+(s&5^5?v&6:t-23?8:u&6))*10+w%2+(s<5?s*2:s<6?v&6:s%t<7?u&6:8);}


            Try it online!



            First extracts some bits into variables s and t, so that the eight rows of the conversion table can be identified by:



            1.  s < 4              u v w¹
            2. s = 4 u v 8¹
            3. s = 5 u 8 v
            4. s = 6 8 v u
            5. s = 7, t = 7 8 8 u
            6. s = 7, t = 23 8 u 8
            7. s = 7, t = 39 u 8 8
            8. s = 7, t = 55 8 8 8

            ¹ Can be computed with s*2


            Then sets up u and v with divisions (right shifts), so that u, v and the input w contain the lower three BCD bits in positions 0-2. The rest is bit shuffling depending on s and t. Two notable tricks are:



            s&5^5  // Rows 1, 2 and 4.
            s%t<7 // Rows 1-5.





            share|improve this answer























            • I think it can be shortened to: f(b){int a=b/2%8,e=b&110,c=b/16,d=c/8;b=10*(10*(d%2|(6>a|78==e?d:8))+c%2+(3<a&a%2?e-46?8:d&6:c&6))+b%2+(4>a?b&6:a-5?a-6&&e-14?8:d&6:c&6)};
              – MCCCS
              14 hours ago










            • @MCCCS Your code seems to be 138 bytes as well.
              – nwellnhof
              12 hours ago


















            up vote
            4
            down vote














            Ruby, 153 ... 119 117 bytes





            ->n{n+=n&896;a,b,c=n&1536,n&96,n&14;"%x"%n+=c<9?0:2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


            Try it online!



            How it works:



            ->n{n+=n&896;


            This is the starting point: convert to BCD by shifting 3 bits to the left, which works for most of the patterns.



            a,b,c=n&1536,n&96,n&14;


            Get the middle bits of each nibble (and one extra bit of the third nibble, but mask the least significant bit).



            "%x"%n+=c<9?0


            If the third digit is less than 10 (less than 9 because we never cared for the LSB anyway), we're set: this is plain BCD, we can output the hex without changing anything



            :2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


            Otherwise do some black magic by shifting bits around and adding magic numbers until we get the result we want.






            share|improve this answer






























              up vote
              4
              down vote














              Python 3, 229 194 184 170 160 158 126 122 121 bytes





              lambda a,b,c,d,e,f,g,h,i,j:[[2*h+i,2*d+e,2*a+b,4][b"ie/]OBWs"[-g&(2*h+i-3or 2*d+e)+4]%x&3]*2+[j,f,c][x-7]for x in[9,8,7]]


              Try it online!



              -4 bytes by xnor



              Formatted:



              h = lambda a,b,c,d,e,f,g,h,i,j:[
              [2*h+i,2*d+e,2*a+b,4][ List to take high bits from
              b"ie/]OBWs"[ 8 char string; where to get high bits for
              each of 8 possible indicator values
              -g&(2*h+i-3or 2*d+e)+4 Compute indicator
              ]%x&3]*2+ High bits of each digit
              [j,f,c][x-7] Low bit of each digit
              for x in[9,8,7]]


              Explanation



              Because I originally wanted to implement this in Jelly, I take a different approach from most answers here, which is simple and perhaps more suited to a golfing language. Let the input bit list be [a0,a1,...,a9]. Then we can derive three variables from the indicator




              • The low bits [a2,a5,a9]: These will always be the low bits of [d0,d1,d2] respectively.

              • The high bits [a0a1,a3a4,a7a8,4]: The high bits of each digit will either be one of these.

              • The indicator bits, [a3,a4,a5,a7,a8], determining how to get the high bits of each digit. We compute the indicator (between 0 and 7) as follows:


                • If a5 == 0, the indicator is 0

                • If a3 nand a4, the indicator is a3a4 + 1

                • Otherwise the indicator is a7a8 + 4.




              Then the high bit of digit d can be elegantly computed as [high_bits][arr[indicator][d]] by the table below, which can be compressed into a string.



              arr = [
              [0,1,2],
              [3,1,2],
              [1,3,2],
              [2,1,3],
              [2,3,3],
              [3,2,3],
              [3,3,2],
              [3,3,3]
              ]


              Alternate solution taking input as a list (158 bytes, can be golfed to ~130):



              lambda a:[a[i]+h*2for h,i in zip([([2*a[j-1]+a[j]for j in[8,4,1]]+[4])[ord("$'-6>;/?"[a[6]and(2*a[7]+a[8]-3or 2*a[3]+a[4])+4])>>x&3]for x in[4,2,0]],[2,5,9])]





              share|improve this answer



















              • 1




                You can used a bytestring b"..." to replace converting with ord.
                – xnor
                9 hours ago


















              up vote
              3
              down vote














              Retina 0.8.2, 191 bytes



              (...)(...)
              :0$1,0$2;
              0..(.),011(.);111
              100$1,100$2;100
              (010|(0..)(.,)001)(.);111
              100$3$2$4;100
              (0..)(.),0(00.);111
              100$2,1$3;$1
              0(..)((.{6});110|(.);101)
              100$3$4;0$1
              1
              01
              +`10
              011
              .0+(1*)
              $.1


              Try it online! Link includes test cases. Explanation:



              (...)(...)
              :0$1,0$2;


              Pad the binary of the first two digits to 4 digits and insert separators. This handles the first two cases in the conversion table.



              0..(.),011(.);111
              100$1,100$2;100


              Handle the last (eighth) case in the conversion table.



              (010|(0..)(.,)001)(.);111
              100$3$2$4;100


              Handle the sixth and seventh cases in the conversion table.



              (0..)(.),0(00.);111
              100$2,1$3;$1


              Handle the fifth case in the conversion table.



              0(..)((.{6});110|(.);101)
              100$3$4;0$1


              Handle the third and fourth cases in the conversion table.



              1
              01
              +`10
              011
              .0+(1*)
              $.1


              Perform binary to decimal conversion.






              share|improve this answer




























                up vote
                2
                down vote














                Python 2, 157 bytes





                lambda a,b,c,d,e,f,g,h,i,j:[c+[a*4+b*2,8][g*h*~(d*~e*i)],f+[d*4+e*2,8,a*4+b*2][g*i+(d<e)*g*i*h],j+[h*4+i*2,[8,[a*4+b*2,d*4+e*2][h<i]][h^i or(h&i-(d|e))]][g]]


                Try it online!






                share|improve this answer




























                  up vote
                  2
                  down vote














                  Clean, 238 ... 189 bytes



                  -2 bytes thanks to Neil



                  import StdEnv
                  $a b c d e f g h i j=100*(c+2*b+4*a)+10*(f+2*e+4*d)+j+2*i+4*h-2*(h*(99*b+198*a-394)+i*(9*e+18*d+h*(e+2*d-4+(b+2*a-4)*(1-10*e-100*d+110*e*d))-35)-4)*g+0^(e+d)*(2*b+4*a-8*i*h*g)


                  Try it online!



                  Takes a 'list' of 10 bits in the form of 10 arguments, using a direct formula to compute the result.






                  share|improve this answer























                  • In i*(9*e+19*d+i*...), that second i* looks unnecessary.
                    – Neil
                    3 hours ago










                  • @Neil You're right, it is, thanks.
                    – Οurous
                    3 hours ago











                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ifUsing("editor", function () {
                  StackExchange.using("externalEditor", function () {
                  StackExchange.using("snippets", function () {
                  StackExchange.snippets.init();
                  });
                  });
                  }, "code-snippets");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "200"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  convertImagesToLinks: false,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: null,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                   

                  draft saved


                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f176371%2fdensely-packed-decimal-dpd-to-decimal%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  8 Answers
                  8






                  active

                  oldest

                  votes








                  8 Answers
                  8






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes








                  up vote
                  7
                  down vote













                  JavaScript (ES6), 118 117 bytes



                  Takes input as an integer. Returns an array of three decimal digits.



                  n=>[(x=n>>4&7,y=n>>7,p=n/2&7)>5&&p<7|x/2^2?8|y&1:y,(p<7?p-5?x:8:x/2^1?8:y&6)|x&1,(p<5?p*2:p<6?x&6:p<7|x<2?y&6:8)|n&1]


                  Try it online!



                  How?



                  Instead of trying to apply the 'official' algorithm, this code is based on some kind of reverse-engineering of the patterns that can be found in the expected results.



                  Given the input integer $n$, we compute:



                  $$begin{align}&x=leftlfloorfrac{n}{16}rightrfloor bmod 8\
                  &y=leftlfloorfrac{n}{128}rightrfloor\
                  &p=leftlfloorfrac{n}{2}rightrfloor bmod 8end{align}
                  $$



                  Example: first digit (hundreds)



                  x     | 0                | 1                | 2                | 3               
                  n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
                  p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
                  ------+------------------+------------------+------------------+-----------------
                  y = 0 | 0000000000008888 | 0000000000008888 | 0000000000008888 | 0000000000008888
                  y = 1 | 1111111111119999 | 1111111111119999 | 1111111111119999 | 1111111111119999
                  y = 2 | 2222222222228888 | 2222222222228888 | 2222222222228888 | 2222222222228888
                  y = 3 | 3333333333339999 | 3333333333339999 | 3333333333339999 | 3333333333339999
                  y = 4 | 4444444444448888 | 4444444444448888 | 4444444444448888 | 4444444444448888
                  y = 5 | 5555555555559999 | 5555555555559999 | 5555555555559999 | 5555555555559999
                  y = 6 | 6666666666668888 | 6666666666668888 | 6666666666668888 | 6666666666668888
                  y = 7 | 7777777777779999 | 7777777777779999 | 7777777777779999 | 7777777777779999

                  x | 4 | 5 | 6 | 7
                  n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
                  p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
                  ------+------------------+------------------+------------------+-----------------
                  y = 0 | 0000000000008800 | 0000000000008800 | 0000000000008888 | 0000000000008888
                  y = 1 | 1111111111119911 | 1111111111119911 | 1111111111119999 | 1111111111119999
                  y = 2 | 2222222222228822 | 2222222222228822 | 2222222222228888 | 2222222222228888
                  y = 3 | 3333333333339933 | 3333333333339933 | 3333333333339999 | 3333333333339999
                  y = 4 | 4444444444448844 | 4444444444448844 | 4444444444448888 | 4444444444448888
                  y = 5 | 5555555555559955 | 5555555555559955 | 5555555555559999 | 5555555555559999
                  y = 6 | 6666666666668866 | 6666666666668866 | 6666666666668888 | 6666666666668888
                  y = 7 | 7777777777779977 | 7777777777779977 | 7777777777779999 | 7777777777779999


                  Algorithm:




                  • If $p<6$, we have $d=y$

                  • If $p=6$, we have $d=8+(ybmod2)$

                  • If $p=7text{ AND }(x<4text{ OR }x>5)$, we have $d=8+(ybmod2)$

                  • If $p=7text{ AND }(x=4text{ OR }x=5)$, we have $d=y$


                  As JS code:



                  p > 5 && p < 7 | x / 2 ^ 2 ? 8 | y & 1 : y





                  share|improve this answer



























                    up vote
                    7
                    down vote













                    JavaScript (ES6), 118 117 bytes



                    Takes input as an integer. Returns an array of three decimal digits.



                    n=>[(x=n>>4&7,y=n>>7,p=n/2&7)>5&&p<7|x/2^2?8|y&1:y,(p<7?p-5?x:8:x/2^1?8:y&6)|x&1,(p<5?p*2:p<6?x&6:p<7|x<2?y&6:8)|n&1]


                    Try it online!



                    How?



                    Instead of trying to apply the 'official' algorithm, this code is based on some kind of reverse-engineering of the patterns that can be found in the expected results.



                    Given the input integer $n$, we compute:



                    $$begin{align}&x=leftlfloorfrac{n}{16}rightrfloor bmod 8\
                    &y=leftlfloorfrac{n}{128}rightrfloor\
                    &p=leftlfloorfrac{n}{2}rightrfloor bmod 8end{align}
                    $$



                    Example: first digit (hundreds)



                    x     | 0                | 1                | 2                | 3               
                    n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
                    p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
                    ------+------------------+------------------+------------------+-----------------
                    y = 0 | 0000000000008888 | 0000000000008888 | 0000000000008888 | 0000000000008888
                    y = 1 | 1111111111119999 | 1111111111119999 | 1111111111119999 | 1111111111119999
                    y = 2 | 2222222222228888 | 2222222222228888 | 2222222222228888 | 2222222222228888
                    y = 3 | 3333333333339999 | 3333333333339999 | 3333333333339999 | 3333333333339999
                    y = 4 | 4444444444448888 | 4444444444448888 | 4444444444448888 | 4444444444448888
                    y = 5 | 5555555555559999 | 5555555555559999 | 5555555555559999 | 5555555555559999
                    y = 6 | 6666666666668888 | 6666666666668888 | 6666666666668888 | 6666666666668888
                    y = 7 | 7777777777779999 | 7777777777779999 | 7777777777779999 | 7777777777779999

                    x | 4 | 5 | 6 | 7
                    n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
                    p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
                    ------+------------------+------------------+------------------+-----------------
                    y = 0 | 0000000000008800 | 0000000000008800 | 0000000000008888 | 0000000000008888
                    y = 1 | 1111111111119911 | 1111111111119911 | 1111111111119999 | 1111111111119999
                    y = 2 | 2222222222228822 | 2222222222228822 | 2222222222228888 | 2222222222228888
                    y = 3 | 3333333333339933 | 3333333333339933 | 3333333333339999 | 3333333333339999
                    y = 4 | 4444444444448844 | 4444444444448844 | 4444444444448888 | 4444444444448888
                    y = 5 | 5555555555559955 | 5555555555559955 | 5555555555559999 | 5555555555559999
                    y = 6 | 6666666666668866 | 6666666666668866 | 6666666666668888 | 6666666666668888
                    y = 7 | 7777777777779977 | 7777777777779977 | 7777777777779999 | 7777777777779999


                    Algorithm:




                    • If $p<6$, we have $d=y$

                    • If $p=6$, we have $d=8+(ybmod2)$

                    • If $p=7text{ AND }(x<4text{ OR }x>5)$, we have $d=8+(ybmod2)$

                    • If $p=7text{ AND }(x=4text{ OR }x=5)$, we have $d=y$


                    As JS code:



                    p > 5 && p < 7 | x / 2 ^ 2 ? 8 | y & 1 : y





                    share|improve this answer

























                      up vote
                      7
                      down vote










                      up vote
                      7
                      down vote









                      JavaScript (ES6), 118 117 bytes



                      Takes input as an integer. Returns an array of three decimal digits.



                      n=>[(x=n>>4&7,y=n>>7,p=n/2&7)>5&&p<7|x/2^2?8|y&1:y,(p<7?p-5?x:8:x/2^1?8:y&6)|x&1,(p<5?p*2:p<6?x&6:p<7|x<2?y&6:8)|n&1]


                      Try it online!



                      How?



                      Instead of trying to apply the 'official' algorithm, this code is based on some kind of reverse-engineering of the patterns that can be found in the expected results.



                      Given the input integer $n$, we compute:



                      $$begin{align}&x=leftlfloorfrac{n}{16}rightrfloor bmod 8\
                      &y=leftlfloorfrac{n}{128}rightrfloor\
                      &p=leftlfloorfrac{n}{2}rightrfloor bmod 8end{align}
                      $$



                      Example: first digit (hundreds)



                      x     | 0                | 1                | 2                | 3               
                      n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
                      p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
                      ------+------------------+------------------+------------------+-----------------
                      y = 0 | 0000000000008888 | 0000000000008888 | 0000000000008888 | 0000000000008888
                      y = 1 | 1111111111119999 | 1111111111119999 | 1111111111119999 | 1111111111119999
                      y = 2 | 2222222222228888 | 2222222222228888 | 2222222222228888 | 2222222222228888
                      y = 3 | 3333333333339999 | 3333333333339999 | 3333333333339999 | 3333333333339999
                      y = 4 | 4444444444448888 | 4444444444448888 | 4444444444448888 | 4444444444448888
                      y = 5 | 5555555555559999 | 5555555555559999 | 5555555555559999 | 5555555555559999
                      y = 6 | 6666666666668888 | 6666666666668888 | 6666666666668888 | 6666666666668888
                      y = 7 | 7777777777779999 | 7777777777779999 | 7777777777779999 | 7777777777779999

                      x | 4 | 5 | 6 | 7
                      n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
                      p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
                      ------+------------------+------------------+------------------+-----------------
                      y = 0 | 0000000000008800 | 0000000000008800 | 0000000000008888 | 0000000000008888
                      y = 1 | 1111111111119911 | 1111111111119911 | 1111111111119999 | 1111111111119999
                      y = 2 | 2222222222228822 | 2222222222228822 | 2222222222228888 | 2222222222228888
                      y = 3 | 3333333333339933 | 3333333333339933 | 3333333333339999 | 3333333333339999
                      y = 4 | 4444444444448844 | 4444444444448844 | 4444444444448888 | 4444444444448888
                      y = 5 | 5555555555559955 | 5555555555559955 | 5555555555559999 | 5555555555559999
                      y = 6 | 6666666666668866 | 6666666666668866 | 6666666666668888 | 6666666666668888
                      y = 7 | 7777777777779977 | 7777777777779977 | 7777777777779999 | 7777777777779999


                      Algorithm:




                      • If $p<6$, we have $d=y$

                      • If $p=6$, we have $d=8+(ybmod2)$

                      • If $p=7text{ AND }(x<4text{ OR }x>5)$, we have $d=8+(ybmod2)$

                      • If $p=7text{ AND }(x=4text{ OR }x=5)$, we have $d=y$


                      As JS code:



                      p > 5 && p < 7 | x / 2 ^ 2 ? 8 | y & 1 : y





                      share|improve this answer














                      JavaScript (ES6), 118 117 bytes



                      Takes input as an integer. Returns an array of three decimal digits.



                      n=>[(x=n>>4&7,y=n>>7,p=n/2&7)>5&&p<7|x/2^2?8|y&1:y,(p<7?p-5?x:8:x/2^1?8:y&6)|x&1,(p<5?p*2:p<6?x&6:p<7|x<2?y&6:8)|n&1]


                      Try it online!



                      How?



                      Instead of trying to apply the 'official' algorithm, this code is based on some kind of reverse-engineering of the patterns that can be found in the expected results.



                      Given the input integer $n$, we compute:



                      $$begin{align}&x=leftlfloorfrac{n}{16}rightrfloor bmod 8\
                      &y=leftlfloorfrac{n}{128}rightrfloor\
                      &p=leftlfloorfrac{n}{2}rightrfloor bmod 8end{align}
                      $$



                      Example: first digit (hundreds)



                      x     | 0                | 1                | 2                | 3               
                      n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
                      p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
                      ------+------------------+------------------+------------------+-----------------
                      y = 0 | 0000000000008888 | 0000000000008888 | 0000000000008888 | 0000000000008888
                      y = 1 | 1111111111119999 | 1111111111119999 | 1111111111119999 | 1111111111119999
                      y = 2 | 2222222222228888 | 2222222222228888 | 2222222222228888 | 2222222222228888
                      y = 3 | 3333333333339999 | 3333333333339999 | 3333333333339999 | 3333333333339999
                      y = 4 | 4444444444448888 | 4444444444448888 | 4444444444448888 | 4444444444448888
                      y = 5 | 5555555555559999 | 5555555555559999 | 5555555555559999 | 5555555555559999
                      y = 6 | 6666666666668888 | 6666666666668888 | 6666666666668888 | 6666666666668888
                      y = 7 | 7777777777779999 | 7777777777779999 | 7777777777779999 | 7777777777779999

                      x | 4 | 5 | 6 | 7
                      n & 1 | 0101010101010101 | 0101010101010101 | 0101010101010101 | 0101010101010101
                      p | 0011223344556677 | 0011223344556677 | 0011223344556677 | 0011223344556677
                      ------+------------------+------------------+------------------+-----------------
                      y = 0 | 0000000000008800 | 0000000000008800 | 0000000000008888 | 0000000000008888
                      y = 1 | 1111111111119911 | 1111111111119911 | 1111111111119999 | 1111111111119999
                      y = 2 | 2222222222228822 | 2222222222228822 | 2222222222228888 | 2222222222228888
                      y = 3 | 3333333333339933 | 3333333333339933 | 3333333333339999 | 3333333333339999
                      y = 4 | 4444444444448844 | 4444444444448844 | 4444444444448888 | 4444444444448888
                      y = 5 | 5555555555559955 | 5555555555559955 | 5555555555559999 | 5555555555559999
                      y = 6 | 6666666666668866 | 6666666666668866 | 6666666666668888 | 6666666666668888
                      y = 7 | 7777777777779977 | 7777777777779977 | 7777777777779999 | 7777777777779999


                      Algorithm:




                      • If $p<6$, we have $d=y$

                      • If $p=6$, we have $d=8+(ybmod2)$

                      • If $p=7text{ AND }(x<4text{ OR }x>5)$, we have $d=8+(ybmod2)$

                      • If $p=7text{ AND }(x=4text{ OR }x=5)$, we have $d=y$


                      As JS code:



                      p > 5 && p < 7 | x / 2 ^ 2 ? 8 | y & 1 : y






                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited 13 hours ago

























                      answered 14 hours ago









                      Arnauld

                      69.5k586293




                      69.5k586293






















                          up vote
                          7
                          down vote














                          JavaScript (Node.js), 126 119 117 112 bytes





                          (a,b,c,d,e,f,g,h,i,j)=>[(g&h&i+(b+=a*4+b,e+=d*4+e)!=5?8:b)+c,(g&i?h+e-3?8:b:e)+f,(g?h-i|h&!e?h?b:e:8:h*4+i*2)+j]


                          Try it online!



                          -5 bytes thanks @tsh (and 2 by myself) So l can make more effort than I expected.



                          -2 more bytes using @tsh's technique!



                          -5 bytes thanks @Arnauld



                          Input as a list of 10 bits (as 10 arguments), output as a list of 3 digits.






                          share|improve this answer



















                          • 1




                            (!i|!d|e) -> i+l!=5; (d|e|!h) -> h+l!=1
                            – tsh
                            17 hours ago















                          up vote
                          7
                          down vote














                          JavaScript (Node.js), 126 119 117 112 bytes





                          (a,b,c,d,e,f,g,h,i,j)=>[(g&h&i+(b+=a*4+b,e+=d*4+e)!=5?8:b)+c,(g&i?h+e-3?8:b:e)+f,(g?h-i|h&!e?h?b:e:8:h*4+i*2)+j]


                          Try it online!



                          -5 bytes thanks @tsh (and 2 by myself) So l can make more effort than I expected.



                          -2 more bytes using @tsh's technique!



                          -5 bytes thanks @Arnauld



                          Input as a list of 10 bits (as 10 arguments), output as a list of 3 digits.






                          share|improve this answer



















                          • 1




                            (!i|!d|e) -> i+l!=5; (d|e|!h) -> h+l!=1
                            – tsh
                            17 hours ago













                          up vote
                          7
                          down vote










                          up vote
                          7
                          down vote










                          JavaScript (Node.js), 126 119 117 112 bytes





                          (a,b,c,d,e,f,g,h,i,j)=>[(g&h&i+(b+=a*4+b,e+=d*4+e)!=5?8:b)+c,(g&i?h+e-3?8:b:e)+f,(g?h-i|h&!e?h?b:e:8:h*4+i*2)+j]


                          Try it online!



                          -5 bytes thanks @tsh (and 2 by myself) So l can make more effort than I expected.



                          -2 more bytes using @tsh's technique!



                          -5 bytes thanks @Arnauld



                          Input as a list of 10 bits (as 10 arguments), output as a list of 3 digits.






                          share|improve this answer















                          JavaScript (Node.js), 126 119 117 112 bytes





                          (a,b,c,d,e,f,g,h,i,j)=>[(g&h&i+(b+=a*4+b,e+=d*4+e)!=5?8:b)+c,(g&i?h+e-3?8:b:e)+f,(g?h-i|h&!e?h?b:e:8:h*4+i*2)+j]


                          Try it online!



                          -5 bytes thanks @tsh (and 2 by myself) So l can make more effort than I expected.



                          -2 more bytes using @tsh's technique!



                          -5 bytes thanks @Arnauld



                          Input as a list of 10 bits (as 10 arguments), output as a list of 3 digits.







                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 4 hours ago

























                          answered yesterday









                          Shieru Asakoto

                          2,290314




                          2,290314








                          • 1




                            (!i|!d|e) -> i+l!=5; (d|e|!h) -> h+l!=1
                            – tsh
                            17 hours ago














                          • 1




                            (!i|!d|e) -> i+l!=5; (d|e|!h) -> h+l!=1
                            – tsh
                            17 hours ago








                          1




                          1




                          (!i|!d|e) -> i+l!=5; (d|e|!h) -> h+l!=1
                          – tsh
                          17 hours ago




                          (!i|!d|e) -> i+l!=5; (d|e|!h) -> h+l!=1
                          – tsh
                          17 hours ago










                          up vote
                          6
                          down vote














                          C (gcc), 138 129 bytes





                          f(w){int t=w/2&55,s=t%8,v=w/16,u=v/8;w=((s<6|t==39?u:8|u%2)*10+v%2+(s&5^5?v&6:t-23?8:u&6))*10+w%2+(s<5?s*2:s<6?v&6:s%t<7?u&6:8);}


                          Try it online!



                          First extracts some bits into variables s and t, so that the eight rows of the conversion table can be identified by:



                          1.  s < 4              u v w¹
                          2. s = 4 u v 8¹
                          3. s = 5 u 8 v
                          4. s = 6 8 v u
                          5. s = 7, t = 7 8 8 u
                          6. s = 7, t = 23 8 u 8
                          7. s = 7, t = 39 u 8 8
                          8. s = 7, t = 55 8 8 8

                          ¹ Can be computed with s*2


                          Then sets up u and v with divisions (right shifts), so that u, v and the input w contain the lower three BCD bits in positions 0-2. The rest is bit shuffling depending on s and t. Two notable tricks are:



                          s&5^5  // Rows 1, 2 and 4.
                          s%t<7 // Rows 1-5.





                          share|improve this answer























                          • I think it can be shortened to: f(b){int a=b/2%8,e=b&110,c=b/16,d=c/8;b=10*(10*(d%2|(6>a|78==e?d:8))+c%2+(3<a&a%2?e-46?8:d&6:c&6))+b%2+(4>a?b&6:a-5?a-6&&e-14?8:d&6:c&6)};
                            – MCCCS
                            14 hours ago










                          • @MCCCS Your code seems to be 138 bytes as well.
                            – nwellnhof
                            12 hours ago















                          up vote
                          6
                          down vote














                          C (gcc), 138 129 bytes





                          f(w){int t=w/2&55,s=t%8,v=w/16,u=v/8;w=((s<6|t==39?u:8|u%2)*10+v%2+(s&5^5?v&6:t-23?8:u&6))*10+w%2+(s<5?s*2:s<6?v&6:s%t<7?u&6:8);}


                          Try it online!



                          First extracts some bits into variables s and t, so that the eight rows of the conversion table can be identified by:



                          1.  s < 4              u v w¹
                          2. s = 4 u v 8¹
                          3. s = 5 u 8 v
                          4. s = 6 8 v u
                          5. s = 7, t = 7 8 8 u
                          6. s = 7, t = 23 8 u 8
                          7. s = 7, t = 39 u 8 8
                          8. s = 7, t = 55 8 8 8

                          ¹ Can be computed with s*2


                          Then sets up u and v with divisions (right shifts), so that u, v and the input w contain the lower three BCD bits in positions 0-2. The rest is bit shuffling depending on s and t. Two notable tricks are:



                          s&5^5  // Rows 1, 2 and 4.
                          s%t<7 // Rows 1-5.





                          share|improve this answer























                          • I think it can be shortened to: f(b){int a=b/2%8,e=b&110,c=b/16,d=c/8;b=10*(10*(d%2|(6>a|78==e?d:8))+c%2+(3<a&a%2?e-46?8:d&6:c&6))+b%2+(4>a?b&6:a-5?a-6&&e-14?8:d&6:c&6)};
                            – MCCCS
                            14 hours ago










                          • @MCCCS Your code seems to be 138 bytes as well.
                            – nwellnhof
                            12 hours ago













                          up vote
                          6
                          down vote










                          up vote
                          6
                          down vote










                          C (gcc), 138 129 bytes





                          f(w){int t=w/2&55,s=t%8,v=w/16,u=v/8;w=((s<6|t==39?u:8|u%2)*10+v%2+(s&5^5?v&6:t-23?8:u&6))*10+w%2+(s<5?s*2:s<6?v&6:s%t<7?u&6:8);}


                          Try it online!



                          First extracts some bits into variables s and t, so that the eight rows of the conversion table can be identified by:



                          1.  s < 4              u v w¹
                          2. s = 4 u v 8¹
                          3. s = 5 u 8 v
                          4. s = 6 8 v u
                          5. s = 7, t = 7 8 8 u
                          6. s = 7, t = 23 8 u 8
                          7. s = 7, t = 39 u 8 8
                          8. s = 7, t = 55 8 8 8

                          ¹ Can be computed with s*2


                          Then sets up u and v with divisions (right shifts), so that u, v and the input w contain the lower three BCD bits in positions 0-2. The rest is bit shuffling depending on s and t. Two notable tricks are:



                          s&5^5  // Rows 1, 2 and 4.
                          s%t<7 // Rows 1-5.





                          share|improve this answer















                          C (gcc), 138 129 bytes





                          f(w){int t=w/2&55,s=t%8,v=w/16,u=v/8;w=((s<6|t==39?u:8|u%2)*10+v%2+(s&5^5?v&6:t-23?8:u&6))*10+w%2+(s<5?s*2:s<6?v&6:s%t<7?u&6:8);}


                          Try it online!



                          First extracts some bits into variables s and t, so that the eight rows of the conversion table can be identified by:



                          1.  s < 4              u v w¹
                          2. s = 4 u v 8¹
                          3. s = 5 u 8 v
                          4. s = 6 8 v u
                          5. s = 7, t = 7 8 8 u
                          6. s = 7, t = 23 8 u 8
                          7. s = 7, t = 39 u 8 8
                          8. s = 7, t = 55 8 8 8

                          ¹ Can be computed with s*2


                          Then sets up u and v with divisions (right shifts), so that u, v and the input w contain the lower three BCD bits in positions 0-2. The rest is bit shuffling depending on s and t. Two notable tricks are:



                          s&5^5  // Rows 1, 2 and 4.
                          s%t<7 // Rows 1-5.






                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 8 hours ago

























                          answered yesterday









                          nwellnhof

                          6,1481125




                          6,1481125












                          • I think it can be shortened to: f(b){int a=b/2%8,e=b&110,c=b/16,d=c/8;b=10*(10*(d%2|(6>a|78==e?d:8))+c%2+(3<a&a%2?e-46?8:d&6:c&6))+b%2+(4>a?b&6:a-5?a-6&&e-14?8:d&6:c&6)};
                            – MCCCS
                            14 hours ago










                          • @MCCCS Your code seems to be 138 bytes as well.
                            – nwellnhof
                            12 hours ago


















                          • I think it can be shortened to: f(b){int a=b/2%8,e=b&110,c=b/16,d=c/8;b=10*(10*(d%2|(6>a|78==e?d:8))+c%2+(3<a&a%2?e-46?8:d&6:c&6))+b%2+(4>a?b&6:a-5?a-6&&e-14?8:d&6:c&6)};
                            – MCCCS
                            14 hours ago










                          • @MCCCS Your code seems to be 138 bytes as well.
                            – nwellnhof
                            12 hours ago
















                          I think it can be shortened to: f(b){int a=b/2%8,e=b&110,c=b/16,d=c/8;b=10*(10*(d%2|(6>a|78==e?d:8))+c%2+(3<a&a%2?e-46?8:d&6:c&6))+b%2+(4>a?b&6:a-5?a-6&&e-14?8:d&6:c&6)};
                          – MCCCS
                          14 hours ago




                          I think it can be shortened to: f(b){int a=b/2%8,e=b&110,c=b/16,d=c/8;b=10*(10*(d%2|(6>a|78==e?d:8))+c%2+(3<a&a%2?e-46?8:d&6:c&6))+b%2+(4>a?b&6:a-5?a-6&&e-14?8:d&6:c&6)};
                          – MCCCS
                          14 hours ago












                          @MCCCS Your code seems to be 138 bytes as well.
                          – nwellnhof
                          12 hours ago




                          @MCCCS Your code seems to be 138 bytes as well.
                          – nwellnhof
                          12 hours ago










                          up vote
                          4
                          down vote














                          Ruby, 153 ... 119 117 bytes





                          ->n{n+=n&896;a,b,c=n&1536,n&96,n&14;"%x"%n+=c<9?0:2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


                          Try it online!



                          How it works:



                          ->n{n+=n&896;


                          This is the starting point: convert to BCD by shifting 3 bits to the left, which works for most of the patterns.



                          a,b,c=n&1536,n&96,n&14;


                          Get the middle bits of each nibble (and one extra bit of the third nibble, but mask the least significant bit).



                          "%x"%n+=c<9?0


                          If the third digit is less than 10 (less than 9 because we never cared for the LSB anyway), we're set: this is plain BCD, we can output the hex without changing anything



                          :2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


                          Otherwise do some black magic by shifting bits around and adding magic numbers until we get the result we want.






                          share|improve this answer



























                            up vote
                            4
                            down vote














                            Ruby, 153 ... 119 117 bytes





                            ->n{n+=n&896;a,b,c=n&1536,n&96,n&14;"%x"%n+=c<9?0:2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


                            Try it online!



                            How it works:



                            ->n{n+=n&896;


                            This is the starting point: convert to BCD by shifting 3 bits to the left, which works for most of the patterns.



                            a,b,c=n&1536,n&96,n&14;


                            Get the middle bits of each nibble (and one extra bit of the third nibble, but mask the least significant bit).



                            "%x"%n+=c<9?0


                            If the third digit is less than 10 (less than 9 because we never cared for the LSB anyway), we're set: this is plain BCD, we can output the hex without changing anything



                            :2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


                            Otherwise do some black magic by shifting bits around and adding magic numbers until we get the result we want.






                            share|improve this answer

























                              up vote
                              4
                              down vote










                              up vote
                              4
                              down vote










                              Ruby, 153 ... 119 117 bytes





                              ->n{n+=n&896;a,b,c=n&1536,n&96,n&14;"%x"%n+=c<9?0:2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


                              Try it online!



                              How it works:



                              ->n{n+=n&896;


                              This is the starting point: convert to BCD by shifting 3 bits to the left, which works for most of the patterns.



                              a,b,c=n&1536,n&96,n&14;


                              Get the middle bits of each nibble (and one extra bit of the third nibble, but mask the least significant bit).



                              "%x"%n+=c<9?0


                              If the third digit is less than 10 (less than 9 because we never cared for the LSB anyway), we're set: this is plain BCD, we can output the hex without changing anything



                              :2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


                              Otherwise do some black magic by shifting bits around and adding magic numbers until we get the result we want.






                              share|improve this answer















                              Ruby, 153 ... 119 117 bytes





                              ->n{n+=n&896;a,b,c=n&1536,n&96,n&14;"%x"%n+=c<9?0:2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


                              Try it online!



                              How it works:



                              ->n{n+=n&896;


                              This is the starting point: convert to BCD by shifting 3 bits to the left, which works for most of the patterns.



                              a,b,c=n&1536,n&96,n&14;


                              Get the middle bits of each nibble (and one extra bit of the third nibble, but mask the least significant bit).



                              "%x"%n+=c<9?0


                              If the third digit is less than 10 (less than 9 because we never cared for the LSB anyway), we're set: this is plain BCD, we can output the hex without changing anything



                              :2036+[b/16-b-1918,r=a>>8,[r+126,a/16-26,a-1978,38][b/32]-a][c/2-5]}


                              Otherwise do some black magic by shifting bits around and adding magic numbers until we get the result we want.







                              share|improve this answer














                              share|improve this answer



                              share|improve this answer








                              edited 13 hours ago

























                              answered 14 hours ago









                              G B

                              7,5261328




                              7,5261328






















                                  up vote
                                  4
                                  down vote














                                  Python 3, 229 194 184 170 160 158 126 122 121 bytes





                                  lambda a,b,c,d,e,f,g,h,i,j:[[2*h+i,2*d+e,2*a+b,4][b"ie/]OBWs"[-g&(2*h+i-3or 2*d+e)+4]%x&3]*2+[j,f,c][x-7]for x in[9,8,7]]


                                  Try it online!



                                  -4 bytes by xnor



                                  Formatted:



                                  h = lambda a,b,c,d,e,f,g,h,i,j:[
                                  [2*h+i,2*d+e,2*a+b,4][ List to take high bits from
                                  b"ie/]OBWs"[ 8 char string; where to get high bits for
                                  each of 8 possible indicator values
                                  -g&(2*h+i-3or 2*d+e)+4 Compute indicator
                                  ]%x&3]*2+ High bits of each digit
                                  [j,f,c][x-7] Low bit of each digit
                                  for x in[9,8,7]]


                                  Explanation



                                  Because I originally wanted to implement this in Jelly, I take a different approach from most answers here, which is simple and perhaps more suited to a golfing language. Let the input bit list be [a0,a1,...,a9]. Then we can derive three variables from the indicator




                                  • The low bits [a2,a5,a9]: These will always be the low bits of [d0,d1,d2] respectively.

                                  • The high bits [a0a1,a3a4,a7a8,4]: The high bits of each digit will either be one of these.

                                  • The indicator bits, [a3,a4,a5,a7,a8], determining how to get the high bits of each digit. We compute the indicator (between 0 and 7) as follows:


                                    • If a5 == 0, the indicator is 0

                                    • If a3 nand a4, the indicator is a3a4 + 1

                                    • Otherwise the indicator is a7a8 + 4.




                                  Then the high bit of digit d can be elegantly computed as [high_bits][arr[indicator][d]] by the table below, which can be compressed into a string.



                                  arr = [
                                  [0,1,2],
                                  [3,1,2],
                                  [1,3,2],
                                  [2,1,3],
                                  [2,3,3],
                                  [3,2,3],
                                  [3,3,2],
                                  [3,3,3]
                                  ]


                                  Alternate solution taking input as a list (158 bytes, can be golfed to ~130):



                                  lambda a:[a[i]+h*2for h,i in zip([([2*a[j-1]+a[j]for j in[8,4,1]]+[4])[ord("$'-6>;/?"[a[6]and(2*a[7]+a[8]-3or 2*a[3]+a[4])+4])>>x&3]for x in[4,2,0]],[2,5,9])]





                                  share|improve this answer



















                                  • 1




                                    You can used a bytestring b"..." to replace converting with ord.
                                    – xnor
                                    9 hours ago















                                  up vote
                                  4
                                  down vote














                                  Python 3, 229 194 184 170 160 158 126 122 121 bytes





                                  lambda a,b,c,d,e,f,g,h,i,j:[[2*h+i,2*d+e,2*a+b,4][b"ie/]OBWs"[-g&(2*h+i-3or 2*d+e)+4]%x&3]*2+[j,f,c][x-7]for x in[9,8,7]]


                                  Try it online!



                                  -4 bytes by xnor



                                  Formatted:



                                  h = lambda a,b,c,d,e,f,g,h,i,j:[
                                  [2*h+i,2*d+e,2*a+b,4][ List to take high bits from
                                  b"ie/]OBWs"[ 8 char string; where to get high bits for
                                  each of 8 possible indicator values
                                  -g&(2*h+i-3or 2*d+e)+4 Compute indicator
                                  ]%x&3]*2+ High bits of each digit
                                  [j,f,c][x-7] Low bit of each digit
                                  for x in[9,8,7]]


                                  Explanation



                                  Because I originally wanted to implement this in Jelly, I take a different approach from most answers here, which is simple and perhaps more suited to a golfing language. Let the input bit list be [a0,a1,...,a9]. Then we can derive three variables from the indicator




                                  • The low bits [a2,a5,a9]: These will always be the low bits of [d0,d1,d2] respectively.

                                  • The high bits [a0a1,a3a4,a7a8,4]: The high bits of each digit will either be one of these.

                                  • The indicator bits, [a3,a4,a5,a7,a8], determining how to get the high bits of each digit. We compute the indicator (between 0 and 7) as follows:


                                    • If a5 == 0, the indicator is 0

                                    • If a3 nand a4, the indicator is a3a4 + 1

                                    • Otherwise the indicator is a7a8 + 4.




                                  Then the high bit of digit d can be elegantly computed as [high_bits][arr[indicator][d]] by the table below, which can be compressed into a string.



                                  arr = [
                                  [0,1,2],
                                  [3,1,2],
                                  [1,3,2],
                                  [2,1,3],
                                  [2,3,3],
                                  [3,2,3],
                                  [3,3,2],
                                  [3,3,3]
                                  ]


                                  Alternate solution taking input as a list (158 bytes, can be golfed to ~130):



                                  lambda a:[a[i]+h*2for h,i in zip([([2*a[j-1]+a[j]for j in[8,4,1]]+[4])[ord("$'-6>;/?"[a[6]and(2*a[7]+a[8]-3or 2*a[3]+a[4])+4])>>x&3]for x in[4,2,0]],[2,5,9])]





                                  share|improve this answer



















                                  • 1




                                    You can used a bytestring b"..." to replace converting with ord.
                                    – xnor
                                    9 hours ago













                                  up vote
                                  4
                                  down vote










                                  up vote
                                  4
                                  down vote










                                  Python 3, 229 194 184 170 160 158 126 122 121 bytes





                                  lambda a,b,c,d,e,f,g,h,i,j:[[2*h+i,2*d+e,2*a+b,4][b"ie/]OBWs"[-g&(2*h+i-3or 2*d+e)+4]%x&3]*2+[j,f,c][x-7]for x in[9,8,7]]


                                  Try it online!



                                  -4 bytes by xnor



                                  Formatted:



                                  h = lambda a,b,c,d,e,f,g,h,i,j:[
                                  [2*h+i,2*d+e,2*a+b,4][ List to take high bits from
                                  b"ie/]OBWs"[ 8 char string; where to get high bits for
                                  each of 8 possible indicator values
                                  -g&(2*h+i-3or 2*d+e)+4 Compute indicator
                                  ]%x&3]*2+ High bits of each digit
                                  [j,f,c][x-7] Low bit of each digit
                                  for x in[9,8,7]]


                                  Explanation



                                  Because I originally wanted to implement this in Jelly, I take a different approach from most answers here, which is simple and perhaps more suited to a golfing language. Let the input bit list be [a0,a1,...,a9]. Then we can derive three variables from the indicator




                                  • The low bits [a2,a5,a9]: These will always be the low bits of [d0,d1,d2] respectively.

                                  • The high bits [a0a1,a3a4,a7a8,4]: The high bits of each digit will either be one of these.

                                  • The indicator bits, [a3,a4,a5,a7,a8], determining how to get the high bits of each digit. We compute the indicator (between 0 and 7) as follows:


                                    • If a5 == 0, the indicator is 0

                                    • If a3 nand a4, the indicator is a3a4 + 1

                                    • Otherwise the indicator is a7a8 + 4.




                                  Then the high bit of digit d can be elegantly computed as [high_bits][arr[indicator][d]] by the table below, which can be compressed into a string.



                                  arr = [
                                  [0,1,2],
                                  [3,1,2],
                                  [1,3,2],
                                  [2,1,3],
                                  [2,3,3],
                                  [3,2,3],
                                  [3,3,2],
                                  [3,3,3]
                                  ]


                                  Alternate solution taking input as a list (158 bytes, can be golfed to ~130):



                                  lambda a:[a[i]+h*2for h,i in zip([([2*a[j-1]+a[j]for j in[8,4,1]]+[4])[ord("$'-6>;/?"[a[6]and(2*a[7]+a[8]-3or 2*a[3]+a[4])+4])>>x&3]for x in[4,2,0]],[2,5,9])]





                                  share|improve this answer















                                  Python 3, 229 194 184 170 160 158 126 122 121 bytes





                                  lambda a,b,c,d,e,f,g,h,i,j:[[2*h+i,2*d+e,2*a+b,4][b"ie/]OBWs"[-g&(2*h+i-3or 2*d+e)+4]%x&3]*2+[j,f,c][x-7]for x in[9,8,7]]


                                  Try it online!



                                  -4 bytes by xnor



                                  Formatted:



                                  h = lambda a,b,c,d,e,f,g,h,i,j:[
                                  [2*h+i,2*d+e,2*a+b,4][ List to take high bits from
                                  b"ie/]OBWs"[ 8 char string; where to get high bits for
                                  each of 8 possible indicator values
                                  -g&(2*h+i-3or 2*d+e)+4 Compute indicator
                                  ]%x&3]*2+ High bits of each digit
                                  [j,f,c][x-7] Low bit of each digit
                                  for x in[9,8,7]]


                                  Explanation



                                  Because I originally wanted to implement this in Jelly, I take a different approach from most answers here, which is simple and perhaps more suited to a golfing language. Let the input bit list be [a0,a1,...,a9]. Then we can derive three variables from the indicator




                                  • The low bits [a2,a5,a9]: These will always be the low bits of [d0,d1,d2] respectively.

                                  • The high bits [a0a1,a3a4,a7a8,4]: The high bits of each digit will either be one of these.

                                  • The indicator bits, [a3,a4,a5,a7,a8], determining how to get the high bits of each digit. We compute the indicator (between 0 and 7) as follows:


                                    • If a5 == 0, the indicator is 0

                                    • If a3 nand a4, the indicator is a3a4 + 1

                                    • Otherwise the indicator is a7a8 + 4.




                                  Then the high bit of digit d can be elegantly computed as [high_bits][arr[indicator][d]] by the table below, which can be compressed into a string.



                                  arr = [
                                  [0,1,2],
                                  [3,1,2],
                                  [1,3,2],
                                  [2,1,3],
                                  [2,3,3],
                                  [3,2,3],
                                  [3,3,2],
                                  [3,3,3]
                                  ]


                                  Alternate solution taking input as a list (158 bytes, can be golfed to ~130):



                                  lambda a:[a[i]+h*2for h,i in zip([([2*a[j-1]+a[j]for j in[8,4,1]]+[4])[ord("$'-6>;/?"[a[6]and(2*a[7]+a[8]-3or 2*a[3]+a[4])+4])>>x&3]for x in[4,2,0]],[2,5,9])]






                                  share|improve this answer














                                  share|improve this answer



                                  share|improve this answer








                                  edited 1 hour ago

























                                  answered 21 hours ago









                                  lirtosiast

                                  15.5k436105




                                  15.5k436105








                                  • 1




                                    You can used a bytestring b"..." to replace converting with ord.
                                    – xnor
                                    9 hours ago














                                  • 1




                                    You can used a bytestring b"..." to replace converting with ord.
                                    – xnor
                                    9 hours ago








                                  1




                                  1




                                  You can used a bytestring b"..." to replace converting with ord.
                                  – xnor
                                  9 hours ago




                                  You can used a bytestring b"..." to replace converting with ord.
                                  – xnor
                                  9 hours ago










                                  up vote
                                  3
                                  down vote














                                  Retina 0.8.2, 191 bytes



                                  (...)(...)
                                  :0$1,0$2;
                                  0..(.),011(.);111
                                  100$1,100$2;100
                                  (010|(0..)(.,)001)(.);111
                                  100$3$2$4;100
                                  (0..)(.),0(00.);111
                                  100$2,1$3;$1
                                  0(..)((.{6});110|(.);101)
                                  100$3$4;0$1
                                  1
                                  01
                                  +`10
                                  011
                                  .0+(1*)
                                  $.1


                                  Try it online! Link includes test cases. Explanation:



                                  (...)(...)
                                  :0$1,0$2;


                                  Pad the binary of the first two digits to 4 digits and insert separators. This handles the first two cases in the conversion table.



                                  0..(.),011(.);111
                                  100$1,100$2;100


                                  Handle the last (eighth) case in the conversion table.



                                  (010|(0..)(.,)001)(.);111
                                  100$3$2$4;100


                                  Handle the sixth and seventh cases in the conversion table.



                                  (0..)(.),0(00.);111
                                  100$2,1$3;$1


                                  Handle the fifth case in the conversion table.



                                  0(..)((.{6});110|(.);101)
                                  100$3$4;0$1


                                  Handle the third and fourth cases in the conversion table.



                                  1
                                  01
                                  +`10
                                  011
                                  .0+(1*)
                                  $.1


                                  Perform binary to decimal conversion.






                                  share|improve this answer

























                                    up vote
                                    3
                                    down vote














                                    Retina 0.8.2, 191 bytes



                                    (...)(...)
                                    :0$1,0$2;
                                    0..(.),011(.);111
                                    100$1,100$2;100
                                    (010|(0..)(.,)001)(.);111
                                    100$3$2$4;100
                                    (0..)(.),0(00.);111
                                    100$2,1$3;$1
                                    0(..)((.{6});110|(.);101)
                                    100$3$4;0$1
                                    1
                                    01
                                    +`10
                                    011
                                    .0+(1*)
                                    $.1


                                    Try it online! Link includes test cases. Explanation:



                                    (...)(...)
                                    :0$1,0$2;


                                    Pad the binary of the first two digits to 4 digits and insert separators. This handles the first two cases in the conversion table.



                                    0..(.),011(.);111
                                    100$1,100$2;100


                                    Handle the last (eighth) case in the conversion table.



                                    (010|(0..)(.,)001)(.);111
                                    100$3$2$4;100


                                    Handle the sixth and seventh cases in the conversion table.



                                    (0..)(.),0(00.);111
                                    100$2,1$3;$1


                                    Handle the fifth case in the conversion table.



                                    0(..)((.{6});110|(.);101)
                                    100$3$4;0$1


                                    Handle the third and fourth cases in the conversion table.



                                    1
                                    01
                                    +`10
                                    011
                                    .0+(1*)
                                    $.1


                                    Perform binary to decimal conversion.






                                    share|improve this answer























                                      up vote
                                      3
                                      down vote










                                      up vote
                                      3
                                      down vote










                                      Retina 0.8.2, 191 bytes



                                      (...)(...)
                                      :0$1,0$2;
                                      0..(.),011(.);111
                                      100$1,100$2;100
                                      (010|(0..)(.,)001)(.);111
                                      100$3$2$4;100
                                      (0..)(.),0(00.);111
                                      100$2,1$3;$1
                                      0(..)((.{6});110|(.);101)
                                      100$3$4;0$1
                                      1
                                      01
                                      +`10
                                      011
                                      .0+(1*)
                                      $.1


                                      Try it online! Link includes test cases. Explanation:



                                      (...)(...)
                                      :0$1,0$2;


                                      Pad the binary of the first two digits to 4 digits and insert separators. This handles the first two cases in the conversion table.



                                      0..(.),011(.);111
                                      100$1,100$2;100


                                      Handle the last (eighth) case in the conversion table.



                                      (010|(0..)(.,)001)(.);111
                                      100$3$2$4;100


                                      Handle the sixth and seventh cases in the conversion table.



                                      (0..)(.),0(00.);111
                                      100$2,1$3;$1


                                      Handle the fifth case in the conversion table.



                                      0(..)((.{6});110|(.);101)
                                      100$3$4;0$1


                                      Handle the third and fourth cases in the conversion table.



                                      1
                                      01
                                      +`10
                                      011
                                      .0+(1*)
                                      $.1


                                      Perform binary to decimal conversion.






                                      share|improve this answer













                                      Retina 0.8.2, 191 bytes



                                      (...)(...)
                                      :0$1,0$2;
                                      0..(.),011(.);111
                                      100$1,100$2;100
                                      (010|(0..)(.,)001)(.);111
                                      100$3$2$4;100
                                      (0..)(.),0(00.);111
                                      100$2,1$3;$1
                                      0(..)((.{6});110|(.);101)
                                      100$3$4;0$1
                                      1
                                      01
                                      +`10
                                      011
                                      .0+(1*)
                                      $.1


                                      Try it online! Link includes test cases. Explanation:



                                      (...)(...)
                                      :0$1,0$2;


                                      Pad the binary of the first two digits to 4 digits and insert separators. This handles the first two cases in the conversion table.



                                      0..(.),011(.);111
                                      100$1,100$2;100


                                      Handle the last (eighth) case in the conversion table.



                                      (010|(0..)(.,)001)(.);111
                                      100$3$2$4;100


                                      Handle the sixth and seventh cases in the conversion table.



                                      (0..)(.),0(00.);111
                                      100$2,1$3;$1


                                      Handle the fifth case in the conversion table.



                                      0(..)((.{6});110|(.);101)
                                      100$3$4;0$1


                                      Handle the third and fourth cases in the conversion table.



                                      1
                                      01
                                      +`10
                                      011
                                      .0+(1*)
                                      $.1


                                      Perform binary to decimal conversion.







                                      share|improve this answer












                                      share|improve this answer



                                      share|improve this answer










                                      answered 19 hours ago









                                      Neil

                                      78.1k744175




                                      78.1k744175






















                                          up vote
                                          2
                                          down vote














                                          Python 2, 157 bytes





                                          lambda a,b,c,d,e,f,g,h,i,j:[c+[a*4+b*2,8][g*h*~(d*~e*i)],f+[d*4+e*2,8,a*4+b*2][g*i+(d<e)*g*i*h],j+[h*4+i*2,[8,[a*4+b*2,d*4+e*2][h<i]][h^i or(h&i-(d|e))]][g]]


                                          Try it online!






                                          share|improve this answer

























                                            up vote
                                            2
                                            down vote














                                            Python 2, 157 bytes





                                            lambda a,b,c,d,e,f,g,h,i,j:[c+[a*4+b*2,8][g*h*~(d*~e*i)],f+[d*4+e*2,8,a*4+b*2][g*i+(d<e)*g*i*h],j+[h*4+i*2,[8,[a*4+b*2,d*4+e*2][h<i]][h^i or(h&i-(d|e))]][g]]


                                            Try it online!






                                            share|improve this answer























                                              up vote
                                              2
                                              down vote










                                              up vote
                                              2
                                              down vote










                                              Python 2, 157 bytes





                                              lambda a,b,c,d,e,f,g,h,i,j:[c+[a*4+b*2,8][g*h*~(d*~e*i)],f+[d*4+e*2,8,a*4+b*2][g*i+(d<e)*g*i*h],j+[h*4+i*2,[8,[a*4+b*2,d*4+e*2][h<i]][h^i or(h&i-(d|e))]][g]]


                                              Try it online!






                                              share|improve this answer













                                              Python 2, 157 bytes





                                              lambda a,b,c,d,e,f,g,h,i,j:[c+[a*4+b*2,8][g*h*~(d*~e*i)],f+[d*4+e*2,8,a*4+b*2][g*i+(d<e)*g*i*h],j+[h*4+i*2,[8,[a*4+b*2,d*4+e*2][h<i]][h^i or(h&i-(d|e))]][g]]


                                              Try it online!







                                              share|improve this answer












                                              share|improve this answer



                                              share|improve this answer










                                              answered 14 hours ago









                                              TFeld

                                              13.7k21139




                                              13.7k21139






















                                                  up vote
                                                  2
                                                  down vote














                                                  Clean, 238 ... 189 bytes



                                                  -2 bytes thanks to Neil



                                                  import StdEnv
                                                  $a b c d e f g h i j=100*(c+2*b+4*a)+10*(f+2*e+4*d)+j+2*i+4*h-2*(h*(99*b+198*a-394)+i*(9*e+18*d+h*(e+2*d-4+(b+2*a-4)*(1-10*e-100*d+110*e*d))-35)-4)*g+0^(e+d)*(2*b+4*a-8*i*h*g)


                                                  Try it online!



                                                  Takes a 'list' of 10 bits in the form of 10 arguments, using a direct formula to compute the result.






                                                  share|improve this answer























                                                  • In i*(9*e+19*d+i*...), that second i* looks unnecessary.
                                                    – Neil
                                                    3 hours ago










                                                  • @Neil You're right, it is, thanks.
                                                    – Οurous
                                                    3 hours ago















                                                  up vote
                                                  2
                                                  down vote














                                                  Clean, 238 ... 189 bytes



                                                  -2 bytes thanks to Neil



                                                  import StdEnv
                                                  $a b c d e f g h i j=100*(c+2*b+4*a)+10*(f+2*e+4*d)+j+2*i+4*h-2*(h*(99*b+198*a-394)+i*(9*e+18*d+h*(e+2*d-4+(b+2*a-4)*(1-10*e-100*d+110*e*d))-35)-4)*g+0^(e+d)*(2*b+4*a-8*i*h*g)


                                                  Try it online!



                                                  Takes a 'list' of 10 bits in the form of 10 arguments, using a direct formula to compute the result.






                                                  share|improve this answer























                                                  • In i*(9*e+19*d+i*...), that second i* looks unnecessary.
                                                    – Neil
                                                    3 hours ago










                                                  • @Neil You're right, it is, thanks.
                                                    – Οurous
                                                    3 hours ago













                                                  up vote
                                                  2
                                                  down vote










                                                  up vote
                                                  2
                                                  down vote










                                                  Clean, 238 ... 189 bytes



                                                  -2 bytes thanks to Neil



                                                  import StdEnv
                                                  $a b c d e f g h i j=100*(c+2*b+4*a)+10*(f+2*e+4*d)+j+2*i+4*h-2*(h*(99*b+198*a-394)+i*(9*e+18*d+h*(e+2*d-4+(b+2*a-4)*(1-10*e-100*d+110*e*d))-35)-4)*g+0^(e+d)*(2*b+4*a-8*i*h*g)


                                                  Try it online!



                                                  Takes a 'list' of 10 bits in the form of 10 arguments, using a direct formula to compute the result.






                                                  share|improve this answer















                                                  Clean, 238 ... 189 bytes



                                                  -2 bytes thanks to Neil



                                                  import StdEnv
                                                  $a b c d e f g h i j=100*(c+2*b+4*a)+10*(f+2*e+4*d)+j+2*i+4*h-2*(h*(99*b+198*a-394)+i*(9*e+18*d+h*(e+2*d-4+(b+2*a-4)*(1-10*e-100*d+110*e*d))-35)-4)*g+0^(e+d)*(2*b+4*a-8*i*h*g)


                                                  Try it online!



                                                  Takes a 'list' of 10 bits in the form of 10 arguments, using a direct formula to compute the result.







                                                  share|improve this answer














                                                  share|improve this answer



                                                  share|improve this answer








                                                  edited 2 hours ago

























                                                  answered 5 hours ago









                                                  Οurous

                                                  5,80311031




                                                  5,80311031












                                                  • In i*(9*e+19*d+i*...), that second i* looks unnecessary.
                                                    – Neil
                                                    3 hours ago










                                                  • @Neil You're right, it is, thanks.
                                                    – Οurous
                                                    3 hours ago


















                                                  • In i*(9*e+19*d+i*...), that second i* looks unnecessary.
                                                    – Neil
                                                    3 hours ago










                                                  • @Neil You're right, it is, thanks.
                                                    – Οurous
                                                    3 hours ago
















                                                  In i*(9*e+19*d+i*...), that second i* looks unnecessary.
                                                  – Neil
                                                  3 hours ago




                                                  In i*(9*e+19*d+i*...), that second i* looks unnecessary.
                                                  – Neil
                                                  3 hours ago












                                                  @Neil You're right, it is, thanks.
                                                  – Οurous
                                                  3 hours ago




                                                  @Neil You're right, it is, thanks.
                                                  – Οurous
                                                  3 hours ago


















                                                   

                                                  draft saved


                                                  draft discarded



















































                                                   


                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f176371%2fdensely-packed-decimal-dpd-to-decimal%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Bundesstraße 106

                                                  Verónica Boquete

                                                  Ida-Boy-Ed-Garten