Multiplying band matrices











up vote
0
down vote

favorite












Consider band matrices of the form



$$M_n:=
begin{pmatrix}
1 & 0 & 0 & 0 & 0 \
n & 2 & 0 & 0 & 0 \
0 & n-1 & 3 & 0 & \
0 & 0 & ddots & ddots & 0\
0 & 0 & 0 & 2 & n \
0 & 0 & 0 & 0 & 1 \
end{pmatrix}$$



I realized using CAS that if I multiplify $M_{n+a}cdots M_{n+1}M_n$ I will eventually get a matrix where the upper half has decreasing rows (when reading from left to right).



For example, for $n=4$ we have



$$M_7cdot M_6cdot M_5cdot M_4=
begin{pmatrix}
1 & 0 & 0 & 0 \
71 & 16 & 0 & 0 \
531 & 261 & 81 & 0 \
821 & 771 & 551 & 256 \
256 & 551 & 771 & 821 \
0 & 81 & 261 & 531 \
0 & 0 & 16 & 71 \
0 & 0 & 0 & 1 \
end{pmatrix}$$



and $821 > 771 > 551 > 256$. How can I prove such property?



For those who are curious, the property appears to start working after $a=(n-2)^2-1$ steps according to the numerical computations for low values of $n$.










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Consider band matrices of the form



    $$M_n:=
    begin{pmatrix}
    1 & 0 & 0 & 0 & 0 \
    n & 2 & 0 & 0 & 0 \
    0 & n-1 & 3 & 0 & \
    0 & 0 & ddots & ddots & 0\
    0 & 0 & 0 & 2 & n \
    0 & 0 & 0 & 0 & 1 \
    end{pmatrix}$$



    I realized using CAS that if I multiplify $M_{n+a}cdots M_{n+1}M_n$ I will eventually get a matrix where the upper half has decreasing rows (when reading from left to right).



    For example, for $n=4$ we have



    $$M_7cdot M_6cdot M_5cdot M_4=
    begin{pmatrix}
    1 & 0 & 0 & 0 \
    71 & 16 & 0 & 0 \
    531 & 261 & 81 & 0 \
    821 & 771 & 551 & 256 \
    256 & 551 & 771 & 821 \
    0 & 81 & 261 & 531 \
    0 & 0 & 16 & 71 \
    0 & 0 & 0 & 1 \
    end{pmatrix}$$



    and $821 > 771 > 551 > 256$. How can I prove such property?



    For those who are curious, the property appears to start working after $a=(n-2)^2-1$ steps according to the numerical computations for low values of $n$.










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Consider band matrices of the form



      $$M_n:=
      begin{pmatrix}
      1 & 0 & 0 & 0 & 0 \
      n & 2 & 0 & 0 & 0 \
      0 & n-1 & 3 & 0 & \
      0 & 0 & ddots & ddots & 0\
      0 & 0 & 0 & 2 & n \
      0 & 0 & 0 & 0 & 1 \
      end{pmatrix}$$



      I realized using CAS that if I multiplify $M_{n+a}cdots M_{n+1}M_n$ I will eventually get a matrix where the upper half has decreasing rows (when reading from left to right).



      For example, for $n=4$ we have



      $$M_7cdot M_6cdot M_5cdot M_4=
      begin{pmatrix}
      1 & 0 & 0 & 0 \
      71 & 16 & 0 & 0 \
      531 & 261 & 81 & 0 \
      821 & 771 & 551 & 256 \
      256 & 551 & 771 & 821 \
      0 & 81 & 261 & 531 \
      0 & 0 & 16 & 71 \
      0 & 0 & 0 & 1 \
      end{pmatrix}$$



      and $821 > 771 > 551 > 256$. How can I prove such property?



      For those who are curious, the property appears to start working after $a=(n-2)^2-1$ steps according to the numerical computations for low values of $n$.










      share|cite|improve this question













      Consider band matrices of the form



      $$M_n:=
      begin{pmatrix}
      1 & 0 & 0 & 0 & 0 \
      n & 2 & 0 & 0 & 0 \
      0 & n-1 & 3 & 0 & \
      0 & 0 & ddots & ddots & 0\
      0 & 0 & 0 & 2 & n \
      0 & 0 & 0 & 0 & 1 \
      end{pmatrix}$$



      I realized using CAS that if I multiplify $M_{n+a}cdots M_{n+1}M_n$ I will eventually get a matrix where the upper half has decreasing rows (when reading from left to right).



      For example, for $n=4$ we have



      $$M_7cdot M_6cdot M_5cdot M_4=
      begin{pmatrix}
      1 & 0 & 0 & 0 \
      71 & 16 & 0 & 0 \
      531 & 261 & 81 & 0 \
      821 & 771 & 551 & 256 \
      256 & 551 & 771 & 821 \
      0 & 81 & 261 & 531 \
      0 & 0 & 16 & 71 \
      0 & 0 & 0 & 1 \
      end{pmatrix}$$



      and $821 > 771 > 551 > 256$. How can I prove such property?



      For those who are curious, the property appears to start working after $a=(n-2)^2-1$ steps according to the numerical computations for low values of $n$.







      matrices






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 17 at 23:36









      user61170

      12




      12



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002957%2fmultiplying-band-matrices%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002957%2fmultiplying-band-matrices%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten