Why is my solution incorrect for solving these quadratic equations?











up vote
4
down vote

favorite
1












$$frac2x -frac5{sqrt{x}}=1 qquad qquad 10) frac3n -frac7{sqrt{n}} -6=0$$



I have these two problems. For the first one I create a dummy variable,
$y = sqrt x$ then $y^2 = x$.

Substituting this in the first equation, I get:
$displaystyle frac{2}{y^{2}} - frac{5}{y} = 1$

Multiplying both sides by $y^{2}$ I get: $2 - 5y = y^{2}$

So I have $y^{2} +5y-2=0$

Solving for y using completing the square, I get:
$displaystyle y = -frac{5}{2} pm frac{sqrt{33}}{2}$

So I should square this answer to get $x$ since $y^2 = x$

Then my answers are $displaystyle y = frac{58}{4} pm frac{10sqrt{33}}{4}$

But this isn't the correct solution.



Also for $#10$ I do the same thing:



Let $y = sqrt n$ then $y^2 = n$

So I have $displaystyle frac{3}{y^2} - frac{7}{y} -6 = 0$

Multiplying everything by $y^{2}$ gives me $3 -7y - 6y^2 = 0$

So I have $6y^{2} +7y - 3 = 0$

Solving for $y$ using the payback method I get: $displaystyle y = -frac{3}{2}, frac{1}{3}$

Then $n = frac{9}{4}, frac{1}{9}$

But plugging these back in, my solution doesn't work.



I've been doing lots of quadratics using dummy variables and sometimes they work and sometimes they don't.



Here are a list of my problems just so you have some reference:



$$1) (x-7)^2 -13(x-7) +36=0 qquad qquad 4) 3(w/6)^2 -8(w/6) +4=0 \
2) (1-3x)^2 -13(1-3x) +36=0 qquad qquad 5) 3(w^2-2)^2 -8(w^2-2) +4=0 \
3) x^4 -13x^2 +36=0 qquad qquad 6) frac{3}{p^2} -frac{8}{p} +4=0$$



What am I doing wrong and how can I do these sorts of problems using dummy variables?










share|cite|improve this question
























  • This question shows plenty of effort and should thus have more upvotes.
    – Shaun
    1 hour ago















up vote
4
down vote

favorite
1












$$frac2x -frac5{sqrt{x}}=1 qquad qquad 10) frac3n -frac7{sqrt{n}} -6=0$$



I have these two problems. For the first one I create a dummy variable,
$y = sqrt x$ then $y^2 = x$.

Substituting this in the first equation, I get:
$displaystyle frac{2}{y^{2}} - frac{5}{y} = 1$

Multiplying both sides by $y^{2}$ I get: $2 - 5y = y^{2}$

So I have $y^{2} +5y-2=0$

Solving for y using completing the square, I get:
$displaystyle y = -frac{5}{2} pm frac{sqrt{33}}{2}$

So I should square this answer to get $x$ since $y^2 = x$

Then my answers are $displaystyle y = frac{58}{4} pm frac{10sqrt{33}}{4}$

But this isn't the correct solution.



Also for $#10$ I do the same thing:



Let $y = sqrt n$ then $y^2 = n$

So I have $displaystyle frac{3}{y^2} - frac{7}{y} -6 = 0$

Multiplying everything by $y^{2}$ gives me $3 -7y - 6y^2 = 0$

So I have $6y^{2} +7y - 3 = 0$

Solving for $y$ using the payback method I get: $displaystyle y = -frac{3}{2}, frac{1}{3}$

Then $n = frac{9}{4}, frac{1}{9}$

But plugging these back in, my solution doesn't work.



I've been doing lots of quadratics using dummy variables and sometimes they work and sometimes they don't.



Here are a list of my problems just so you have some reference:



$$1) (x-7)^2 -13(x-7) +36=0 qquad qquad 4) 3(w/6)^2 -8(w/6) +4=0 \
2) (1-3x)^2 -13(1-3x) +36=0 qquad qquad 5) 3(w^2-2)^2 -8(w^2-2) +4=0 \
3) x^4 -13x^2 +36=0 qquad qquad 6) frac{3}{p^2} -frac{8}{p} +4=0$$



What am I doing wrong and how can I do these sorts of problems using dummy variables?










share|cite|improve this question
























  • This question shows plenty of effort and should thus have more upvotes.
    – Shaun
    1 hour ago













up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





$$frac2x -frac5{sqrt{x}}=1 qquad qquad 10) frac3n -frac7{sqrt{n}} -6=0$$



I have these two problems. For the first one I create a dummy variable,
$y = sqrt x$ then $y^2 = x$.

Substituting this in the first equation, I get:
$displaystyle frac{2}{y^{2}} - frac{5}{y} = 1$

Multiplying both sides by $y^{2}$ I get: $2 - 5y = y^{2}$

So I have $y^{2} +5y-2=0$

Solving for y using completing the square, I get:
$displaystyle y = -frac{5}{2} pm frac{sqrt{33}}{2}$

So I should square this answer to get $x$ since $y^2 = x$

Then my answers are $displaystyle y = frac{58}{4} pm frac{10sqrt{33}}{4}$

But this isn't the correct solution.



Also for $#10$ I do the same thing:



Let $y = sqrt n$ then $y^2 = n$

So I have $displaystyle frac{3}{y^2} - frac{7}{y} -6 = 0$

Multiplying everything by $y^{2}$ gives me $3 -7y - 6y^2 = 0$

So I have $6y^{2} +7y - 3 = 0$

Solving for $y$ using the payback method I get: $displaystyle y = -frac{3}{2}, frac{1}{3}$

Then $n = frac{9}{4}, frac{1}{9}$

But plugging these back in, my solution doesn't work.



I've been doing lots of quadratics using dummy variables and sometimes they work and sometimes they don't.



Here are a list of my problems just so you have some reference:



$$1) (x-7)^2 -13(x-7) +36=0 qquad qquad 4) 3(w/6)^2 -8(w/6) +4=0 \
2) (1-3x)^2 -13(1-3x) +36=0 qquad qquad 5) 3(w^2-2)^2 -8(w^2-2) +4=0 \
3) x^4 -13x^2 +36=0 qquad qquad 6) frac{3}{p^2} -frac{8}{p} +4=0$$



What am I doing wrong and how can I do these sorts of problems using dummy variables?










share|cite|improve this question















$$frac2x -frac5{sqrt{x}}=1 qquad qquad 10) frac3n -frac7{sqrt{n}} -6=0$$



I have these two problems. For the first one I create a dummy variable,
$y = sqrt x$ then $y^2 = x$.

Substituting this in the first equation, I get:
$displaystyle frac{2}{y^{2}} - frac{5}{y} = 1$

Multiplying both sides by $y^{2}$ I get: $2 - 5y = y^{2}$

So I have $y^{2} +5y-2=0$

Solving for y using completing the square, I get:
$displaystyle y = -frac{5}{2} pm frac{sqrt{33}}{2}$

So I should square this answer to get $x$ since $y^2 = x$

Then my answers are $displaystyle y = frac{58}{4} pm frac{10sqrt{33}}{4}$

But this isn't the correct solution.



Also for $#10$ I do the same thing:



Let $y = sqrt n$ then $y^2 = n$

So I have $displaystyle frac{3}{y^2} - frac{7}{y} -6 = 0$

Multiplying everything by $y^{2}$ gives me $3 -7y - 6y^2 = 0$

So I have $6y^{2} +7y - 3 = 0$

Solving for $y$ using the payback method I get: $displaystyle y = -frac{3}{2}, frac{1}{3}$

Then $n = frac{9}{4}, frac{1}{9}$

But plugging these back in, my solution doesn't work.



I've been doing lots of quadratics using dummy variables and sometimes they work and sometimes they don't.



Here are a list of my problems just so you have some reference:



$$1) (x-7)^2 -13(x-7) +36=0 qquad qquad 4) 3(w/6)^2 -8(w/6) +4=0 \
2) (1-3x)^2 -13(1-3x) +36=0 qquad qquad 5) 3(w^2-2)^2 -8(w^2-2) +4=0 \
3) x^4 -13x^2 +36=0 qquad qquad 6) frac{3}{p^2} -frac{8}{p} +4=0$$



What am I doing wrong and how can I do these sorts of problems using dummy variables?







quadratics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









KM101

2,254415




2,254415










asked 2 hours ago









user130306

36717




36717












  • This question shows plenty of effort and should thus have more upvotes.
    – Shaun
    1 hour ago


















  • This question shows plenty of effort and should thus have more upvotes.
    – Shaun
    1 hour ago
















This question shows plenty of effort and should thus have more upvotes.
– Shaun
1 hour ago




This question shows plenty of effort and should thus have more upvotes.
– Shaun
1 hour ago










4 Answers
4






active

oldest

votes

















up vote
2
down vote



accepted










Based on comments some of your issues seemed to be in checking answers and others likely an issue in arithmetic (even the greatest sometimes think $1+1=3$ every now and then, but I can’t speak for them). Here’s a tip I have for checking answers to quadratics.



Generally you have something of the form:



$$Ax^2 + Bx + C = 0$$



You only need to know it is zero. So what I did was this. I didn’t multiply everything. I plugged enough in to verify. So say D = x. I might do the following:



$$DAx + Bx + frac CD x = 0$$



Now you just take the sum $DA + B + frac CD$ which can be done mentally with most high school practice problems.



In the case of $(x-7)^2 - 13(x-7) + 36 = 0$ this makes it much easier to verify $11$ and $16$ as answers.



As for general quadratics your style and technique is good. I don’t see any flaws in your thinking aside from being careful about the back substitutions. Definitely watch for dropping negatives and adding them in. Doing your own new problem might introduce needs to carefully think about the Complex Plane if you aren’t careful. However picking the right substitutions is an art and one I cannot really describe with a process or answer. Most people at your level do not substitutions and so your definitely thinking outside the box. This is a good thing. I did not even know if substitutions until Calculus and it made it very hard to grasp that concept (of just creating a new variable on the fly) so kudos to you.






share|cite|improve this answer





















  • Your equation "$DAx+Bx+frac{C}{D}x = 0$" makes no sense, so I don't know how you got the (correct) "$DA+B+frac{C}{D} = 0$" out of that.
    – user21820
    50 mins ago










  • @user21820 the wording is a little confusing, but if $x=D$ then it is indeed the case that $Ax^2+Bx+C=DAx+Bx+frac{C}{D}x$.
    – Carmeister
    3 mins ago




















up vote
4
down vote













You have to pay attention to your domain. In the first equation you get a positive and a negative value for $y$, while $sqrt{x}$, which is your substitution, can only be positive.






share|cite|improve this answer





















  • even if i choose the positive value for x and try to plug it back in, it isn't the correct answer
    – user130306
    2 hours ago










  • Not sure how you checked your answers, but one of them is surely correct, namely the one with the minus in the first equation.
    – Makina
    2 hours ago












  • actually I just redid my question 1, (which is on the bottom) and there, there is no restriction on the domain since x can be anything, and i still get teh wrong answer. I get $x =11, 16$ and that doesn't work. I'm referencing $(x-7)^{2}-13(x-7)+36=0$ btw
    – user130306
    2 hours ago










  • @user130306 x = 11 is definitely a solution by mental math. Checking 16 now.
    – The Great Duck
    2 hours ago










  • so you're saying $x = frac{58}{4} - frac{10sqrt 33}{4}$ works?
    – user130306
    2 hours ago


















up vote
2
down vote













You are doing your algebra correctly, the only problem is when you have a positive and a negative value for a square root you have to ignore the negative one.



I checked the answer $$ x= frac {58-10 sqrt {33}}{4}$$ for your first problem and it does work nicely.






share|cite|improve this answer




























    up vote
    0
    down vote













    In your case, substituting $x = y^2$ might introduce extraneous roots. So you need to check that your computed answers are really answers.



    Without any substitution, you could write $dfrac2x -dfrac5{sqrt{x}}=1$ as



    $$2 left(dfrac{1}{sqrt x}right)^2 - 5left(dfrac{1}{sqrt x}right)-1 = 0$$



    So $$dfrac{1}{sqrt x} = dfrac{5 pm sqrt{33}}{4}$$



    We can ignore $dfrac{1}{sqrt x} = dfrac{5 - sqrt{33}}{4}$ since the number on the right side is negative.



    So we get $$sqrt x = dfrac{4}{5+sqrt{33}}= dfrac{sqrt{33}-5}{2}$$



    and $$x = dfrac{29-5sqrt{33}}{2}$$



    Problem $(5)$ for example, can be written as



    begin{align}
    3color{red}{(w^2-2)}^2 -8color{red}{(w^2-2)} + 4 &= 0 \
    (3color{red}{(w^2-2)} - 2)(color{red}{(w^2-2)} - 2) &= 0 \
    w^2-2= dfrac 23 &text{ or } w^2-2 = 2 \
    w^2 = dfrac 83 &text{ or } w^2 = 4 \
    w &in left{dfrac 23 sqrt 6, -dfrac 23 sqrt 6, 2, -2 right}
    end{align}



    You can solve the others similarly.






    share|cite|improve this answer























      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














       

      draft saved


      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012370%2fwhy-is-my-solution-incorrect-for-solving-these-quadratic-equations%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote



      accepted










      Based on comments some of your issues seemed to be in checking answers and others likely an issue in arithmetic (even the greatest sometimes think $1+1=3$ every now and then, but I can’t speak for them). Here’s a tip I have for checking answers to quadratics.



      Generally you have something of the form:



      $$Ax^2 + Bx + C = 0$$



      You only need to know it is zero. So what I did was this. I didn’t multiply everything. I plugged enough in to verify. So say D = x. I might do the following:



      $$DAx + Bx + frac CD x = 0$$



      Now you just take the sum $DA + B + frac CD$ which can be done mentally with most high school practice problems.



      In the case of $(x-7)^2 - 13(x-7) + 36 = 0$ this makes it much easier to verify $11$ and $16$ as answers.



      As for general quadratics your style and technique is good. I don’t see any flaws in your thinking aside from being careful about the back substitutions. Definitely watch for dropping negatives and adding them in. Doing your own new problem might introduce needs to carefully think about the Complex Plane if you aren’t careful. However picking the right substitutions is an art and one I cannot really describe with a process or answer. Most people at your level do not substitutions and so your definitely thinking outside the box. This is a good thing. I did not even know if substitutions until Calculus and it made it very hard to grasp that concept (of just creating a new variable on the fly) so kudos to you.






      share|cite|improve this answer





















      • Your equation "$DAx+Bx+frac{C}{D}x = 0$" makes no sense, so I don't know how you got the (correct) "$DA+B+frac{C}{D} = 0$" out of that.
        – user21820
        50 mins ago










      • @user21820 the wording is a little confusing, but if $x=D$ then it is indeed the case that $Ax^2+Bx+C=DAx+Bx+frac{C}{D}x$.
        – Carmeister
        3 mins ago

















      up vote
      2
      down vote



      accepted










      Based on comments some of your issues seemed to be in checking answers and others likely an issue in arithmetic (even the greatest sometimes think $1+1=3$ every now and then, but I can’t speak for them). Here’s a tip I have for checking answers to quadratics.



      Generally you have something of the form:



      $$Ax^2 + Bx + C = 0$$



      You only need to know it is zero. So what I did was this. I didn’t multiply everything. I plugged enough in to verify. So say D = x. I might do the following:



      $$DAx + Bx + frac CD x = 0$$



      Now you just take the sum $DA + B + frac CD$ which can be done mentally with most high school practice problems.



      In the case of $(x-7)^2 - 13(x-7) + 36 = 0$ this makes it much easier to verify $11$ and $16$ as answers.



      As for general quadratics your style and technique is good. I don’t see any flaws in your thinking aside from being careful about the back substitutions. Definitely watch for dropping negatives and adding them in. Doing your own new problem might introduce needs to carefully think about the Complex Plane if you aren’t careful. However picking the right substitutions is an art and one I cannot really describe with a process or answer. Most people at your level do not substitutions and so your definitely thinking outside the box. This is a good thing. I did not even know if substitutions until Calculus and it made it very hard to grasp that concept (of just creating a new variable on the fly) so kudos to you.






      share|cite|improve this answer





















      • Your equation "$DAx+Bx+frac{C}{D}x = 0$" makes no sense, so I don't know how you got the (correct) "$DA+B+frac{C}{D} = 0$" out of that.
        – user21820
        50 mins ago










      • @user21820 the wording is a little confusing, but if $x=D$ then it is indeed the case that $Ax^2+Bx+C=DAx+Bx+frac{C}{D}x$.
        – Carmeister
        3 mins ago















      up vote
      2
      down vote



      accepted







      up vote
      2
      down vote



      accepted






      Based on comments some of your issues seemed to be in checking answers and others likely an issue in arithmetic (even the greatest sometimes think $1+1=3$ every now and then, but I can’t speak for them). Here’s a tip I have for checking answers to quadratics.



      Generally you have something of the form:



      $$Ax^2 + Bx + C = 0$$



      You only need to know it is zero. So what I did was this. I didn’t multiply everything. I plugged enough in to verify. So say D = x. I might do the following:



      $$DAx + Bx + frac CD x = 0$$



      Now you just take the sum $DA + B + frac CD$ which can be done mentally with most high school practice problems.



      In the case of $(x-7)^2 - 13(x-7) + 36 = 0$ this makes it much easier to verify $11$ and $16$ as answers.



      As for general quadratics your style and technique is good. I don’t see any flaws in your thinking aside from being careful about the back substitutions. Definitely watch for dropping negatives and adding them in. Doing your own new problem might introduce needs to carefully think about the Complex Plane if you aren’t careful. However picking the right substitutions is an art and one I cannot really describe with a process or answer. Most people at your level do not substitutions and so your definitely thinking outside the box. This is a good thing. I did not even know if substitutions until Calculus and it made it very hard to grasp that concept (of just creating a new variable on the fly) so kudos to you.






      share|cite|improve this answer












      Based on comments some of your issues seemed to be in checking answers and others likely an issue in arithmetic (even the greatest sometimes think $1+1=3$ every now and then, but I can’t speak for them). Here’s a tip I have for checking answers to quadratics.



      Generally you have something of the form:



      $$Ax^2 + Bx + C = 0$$



      You only need to know it is zero. So what I did was this. I didn’t multiply everything. I plugged enough in to verify. So say D = x. I might do the following:



      $$DAx + Bx + frac CD x = 0$$



      Now you just take the sum $DA + B + frac CD$ which can be done mentally with most high school practice problems.



      In the case of $(x-7)^2 - 13(x-7) + 36 = 0$ this makes it much easier to verify $11$ and $16$ as answers.



      As for general quadratics your style and technique is good. I don’t see any flaws in your thinking aside from being careful about the back substitutions. Definitely watch for dropping negatives and adding them in. Doing your own new problem might introduce needs to carefully think about the Complex Plane if you aren’t careful. However picking the right substitutions is an art and one I cannot really describe with a process or answer. Most people at your level do not substitutions and so your definitely thinking outside the box. This is a good thing. I did not even know if substitutions until Calculus and it made it very hard to grasp that concept (of just creating a new variable on the fly) so kudos to you.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 2 hours ago









      The Great Duck

      9732047




      9732047












      • Your equation "$DAx+Bx+frac{C}{D}x = 0$" makes no sense, so I don't know how you got the (correct) "$DA+B+frac{C}{D} = 0$" out of that.
        – user21820
        50 mins ago










      • @user21820 the wording is a little confusing, but if $x=D$ then it is indeed the case that $Ax^2+Bx+C=DAx+Bx+frac{C}{D}x$.
        – Carmeister
        3 mins ago




















      • Your equation "$DAx+Bx+frac{C}{D}x = 0$" makes no sense, so I don't know how you got the (correct) "$DA+B+frac{C}{D} = 0$" out of that.
        – user21820
        50 mins ago










      • @user21820 the wording is a little confusing, but if $x=D$ then it is indeed the case that $Ax^2+Bx+C=DAx+Bx+frac{C}{D}x$.
        – Carmeister
        3 mins ago


















      Your equation "$DAx+Bx+frac{C}{D}x = 0$" makes no sense, so I don't know how you got the (correct) "$DA+B+frac{C}{D} = 0$" out of that.
      – user21820
      50 mins ago




      Your equation "$DAx+Bx+frac{C}{D}x = 0$" makes no sense, so I don't know how you got the (correct) "$DA+B+frac{C}{D} = 0$" out of that.
      – user21820
      50 mins ago












      @user21820 the wording is a little confusing, but if $x=D$ then it is indeed the case that $Ax^2+Bx+C=DAx+Bx+frac{C}{D}x$.
      – Carmeister
      3 mins ago






      @user21820 the wording is a little confusing, but if $x=D$ then it is indeed the case that $Ax^2+Bx+C=DAx+Bx+frac{C}{D}x$.
      – Carmeister
      3 mins ago












      up vote
      4
      down vote













      You have to pay attention to your domain. In the first equation you get a positive and a negative value for $y$, while $sqrt{x}$, which is your substitution, can only be positive.






      share|cite|improve this answer





















      • even if i choose the positive value for x and try to plug it back in, it isn't the correct answer
        – user130306
        2 hours ago










      • Not sure how you checked your answers, but one of them is surely correct, namely the one with the minus in the first equation.
        – Makina
        2 hours ago












      • actually I just redid my question 1, (which is on the bottom) and there, there is no restriction on the domain since x can be anything, and i still get teh wrong answer. I get $x =11, 16$ and that doesn't work. I'm referencing $(x-7)^{2}-13(x-7)+36=0$ btw
        – user130306
        2 hours ago










      • @user130306 x = 11 is definitely a solution by mental math. Checking 16 now.
        – The Great Duck
        2 hours ago










      • so you're saying $x = frac{58}{4} - frac{10sqrt 33}{4}$ works?
        – user130306
        2 hours ago















      up vote
      4
      down vote













      You have to pay attention to your domain. In the first equation you get a positive and a negative value for $y$, while $sqrt{x}$, which is your substitution, can only be positive.






      share|cite|improve this answer





















      • even if i choose the positive value for x and try to plug it back in, it isn't the correct answer
        – user130306
        2 hours ago










      • Not sure how you checked your answers, but one of them is surely correct, namely the one with the minus in the first equation.
        – Makina
        2 hours ago












      • actually I just redid my question 1, (which is on the bottom) and there, there is no restriction on the domain since x can be anything, and i still get teh wrong answer. I get $x =11, 16$ and that doesn't work. I'm referencing $(x-7)^{2}-13(x-7)+36=0$ btw
        – user130306
        2 hours ago










      • @user130306 x = 11 is definitely a solution by mental math. Checking 16 now.
        – The Great Duck
        2 hours ago










      • so you're saying $x = frac{58}{4} - frac{10sqrt 33}{4}$ works?
        – user130306
        2 hours ago













      up vote
      4
      down vote










      up vote
      4
      down vote









      You have to pay attention to your domain. In the first equation you get a positive and a negative value for $y$, while $sqrt{x}$, which is your substitution, can only be positive.






      share|cite|improve this answer












      You have to pay attention to your domain. In the first equation you get a positive and a negative value for $y$, while $sqrt{x}$, which is your substitution, can only be positive.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 2 hours ago









      Makina

      986113




      986113












      • even if i choose the positive value for x and try to plug it back in, it isn't the correct answer
        – user130306
        2 hours ago










      • Not sure how you checked your answers, but one of them is surely correct, namely the one with the minus in the first equation.
        – Makina
        2 hours ago












      • actually I just redid my question 1, (which is on the bottom) and there, there is no restriction on the domain since x can be anything, and i still get teh wrong answer. I get $x =11, 16$ and that doesn't work. I'm referencing $(x-7)^{2}-13(x-7)+36=0$ btw
        – user130306
        2 hours ago










      • @user130306 x = 11 is definitely a solution by mental math. Checking 16 now.
        – The Great Duck
        2 hours ago










      • so you're saying $x = frac{58}{4} - frac{10sqrt 33}{4}$ works?
        – user130306
        2 hours ago


















      • even if i choose the positive value for x and try to plug it back in, it isn't the correct answer
        – user130306
        2 hours ago










      • Not sure how you checked your answers, but one of them is surely correct, namely the one with the minus in the first equation.
        – Makina
        2 hours ago












      • actually I just redid my question 1, (which is on the bottom) and there, there is no restriction on the domain since x can be anything, and i still get teh wrong answer. I get $x =11, 16$ and that doesn't work. I'm referencing $(x-7)^{2}-13(x-7)+36=0$ btw
        – user130306
        2 hours ago










      • @user130306 x = 11 is definitely a solution by mental math. Checking 16 now.
        – The Great Duck
        2 hours ago










      • so you're saying $x = frac{58}{4} - frac{10sqrt 33}{4}$ works?
        – user130306
        2 hours ago
















      even if i choose the positive value for x and try to plug it back in, it isn't the correct answer
      – user130306
      2 hours ago




      even if i choose the positive value for x and try to plug it back in, it isn't the correct answer
      – user130306
      2 hours ago












      Not sure how you checked your answers, but one of them is surely correct, namely the one with the minus in the first equation.
      – Makina
      2 hours ago






      Not sure how you checked your answers, but one of them is surely correct, namely the one with the minus in the first equation.
      – Makina
      2 hours ago














      actually I just redid my question 1, (which is on the bottom) and there, there is no restriction on the domain since x can be anything, and i still get teh wrong answer. I get $x =11, 16$ and that doesn't work. I'm referencing $(x-7)^{2}-13(x-7)+36=0$ btw
      – user130306
      2 hours ago




      actually I just redid my question 1, (which is on the bottom) and there, there is no restriction on the domain since x can be anything, and i still get teh wrong answer. I get $x =11, 16$ and that doesn't work. I'm referencing $(x-7)^{2}-13(x-7)+36=0$ btw
      – user130306
      2 hours ago












      @user130306 x = 11 is definitely a solution by mental math. Checking 16 now.
      – The Great Duck
      2 hours ago




      @user130306 x = 11 is definitely a solution by mental math. Checking 16 now.
      – The Great Duck
      2 hours ago












      so you're saying $x = frac{58}{4} - frac{10sqrt 33}{4}$ works?
      – user130306
      2 hours ago




      so you're saying $x = frac{58}{4} - frac{10sqrt 33}{4}$ works?
      – user130306
      2 hours ago










      up vote
      2
      down vote













      You are doing your algebra correctly, the only problem is when you have a positive and a negative value for a square root you have to ignore the negative one.



      I checked the answer $$ x= frac {58-10 sqrt {33}}{4}$$ for your first problem and it does work nicely.






      share|cite|improve this answer

























        up vote
        2
        down vote













        You are doing your algebra correctly, the only problem is when you have a positive and a negative value for a square root you have to ignore the negative one.



        I checked the answer $$ x= frac {58-10 sqrt {33}}{4}$$ for your first problem and it does work nicely.






        share|cite|improve this answer























          up vote
          2
          down vote










          up vote
          2
          down vote









          You are doing your algebra correctly, the only problem is when you have a positive and a negative value for a square root you have to ignore the negative one.



          I checked the answer $$ x= frac {58-10 sqrt {33}}{4}$$ for your first problem and it does work nicely.






          share|cite|improve this answer












          You are doing your algebra correctly, the only problem is when you have a positive and a negative value for a square root you have to ignore the negative one.



          I checked the answer $$ x= frac {58-10 sqrt {33}}{4}$$ for your first problem and it does work nicely.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Mohammad Riazi-Kermani

          40.2k41958




          40.2k41958






















              up vote
              0
              down vote













              In your case, substituting $x = y^2$ might introduce extraneous roots. So you need to check that your computed answers are really answers.



              Without any substitution, you could write $dfrac2x -dfrac5{sqrt{x}}=1$ as



              $$2 left(dfrac{1}{sqrt x}right)^2 - 5left(dfrac{1}{sqrt x}right)-1 = 0$$



              So $$dfrac{1}{sqrt x} = dfrac{5 pm sqrt{33}}{4}$$



              We can ignore $dfrac{1}{sqrt x} = dfrac{5 - sqrt{33}}{4}$ since the number on the right side is negative.



              So we get $$sqrt x = dfrac{4}{5+sqrt{33}}= dfrac{sqrt{33}-5}{2}$$



              and $$x = dfrac{29-5sqrt{33}}{2}$$



              Problem $(5)$ for example, can be written as



              begin{align}
              3color{red}{(w^2-2)}^2 -8color{red}{(w^2-2)} + 4 &= 0 \
              (3color{red}{(w^2-2)} - 2)(color{red}{(w^2-2)} - 2) &= 0 \
              w^2-2= dfrac 23 &text{ or } w^2-2 = 2 \
              w^2 = dfrac 83 &text{ or } w^2 = 4 \
              w &in left{dfrac 23 sqrt 6, -dfrac 23 sqrt 6, 2, -2 right}
              end{align}



              You can solve the others similarly.






              share|cite|improve this answer



























                up vote
                0
                down vote













                In your case, substituting $x = y^2$ might introduce extraneous roots. So you need to check that your computed answers are really answers.



                Without any substitution, you could write $dfrac2x -dfrac5{sqrt{x}}=1$ as



                $$2 left(dfrac{1}{sqrt x}right)^2 - 5left(dfrac{1}{sqrt x}right)-1 = 0$$



                So $$dfrac{1}{sqrt x} = dfrac{5 pm sqrt{33}}{4}$$



                We can ignore $dfrac{1}{sqrt x} = dfrac{5 - sqrt{33}}{4}$ since the number on the right side is negative.



                So we get $$sqrt x = dfrac{4}{5+sqrt{33}}= dfrac{sqrt{33}-5}{2}$$



                and $$x = dfrac{29-5sqrt{33}}{2}$$



                Problem $(5)$ for example, can be written as



                begin{align}
                3color{red}{(w^2-2)}^2 -8color{red}{(w^2-2)} + 4 &= 0 \
                (3color{red}{(w^2-2)} - 2)(color{red}{(w^2-2)} - 2) &= 0 \
                w^2-2= dfrac 23 &text{ or } w^2-2 = 2 \
                w^2 = dfrac 83 &text{ or } w^2 = 4 \
                w &in left{dfrac 23 sqrt 6, -dfrac 23 sqrt 6, 2, -2 right}
                end{align}



                You can solve the others similarly.






                share|cite|improve this answer

























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  In your case, substituting $x = y^2$ might introduce extraneous roots. So you need to check that your computed answers are really answers.



                  Without any substitution, you could write $dfrac2x -dfrac5{sqrt{x}}=1$ as



                  $$2 left(dfrac{1}{sqrt x}right)^2 - 5left(dfrac{1}{sqrt x}right)-1 = 0$$



                  So $$dfrac{1}{sqrt x} = dfrac{5 pm sqrt{33}}{4}$$



                  We can ignore $dfrac{1}{sqrt x} = dfrac{5 - sqrt{33}}{4}$ since the number on the right side is negative.



                  So we get $$sqrt x = dfrac{4}{5+sqrt{33}}= dfrac{sqrt{33}-5}{2}$$



                  and $$x = dfrac{29-5sqrt{33}}{2}$$



                  Problem $(5)$ for example, can be written as



                  begin{align}
                  3color{red}{(w^2-2)}^2 -8color{red}{(w^2-2)} + 4 &= 0 \
                  (3color{red}{(w^2-2)} - 2)(color{red}{(w^2-2)} - 2) &= 0 \
                  w^2-2= dfrac 23 &text{ or } w^2-2 = 2 \
                  w^2 = dfrac 83 &text{ or } w^2 = 4 \
                  w &in left{dfrac 23 sqrt 6, -dfrac 23 sqrt 6, 2, -2 right}
                  end{align}



                  You can solve the others similarly.






                  share|cite|improve this answer














                  In your case, substituting $x = y^2$ might introduce extraneous roots. So you need to check that your computed answers are really answers.



                  Without any substitution, you could write $dfrac2x -dfrac5{sqrt{x}}=1$ as



                  $$2 left(dfrac{1}{sqrt x}right)^2 - 5left(dfrac{1}{sqrt x}right)-1 = 0$$



                  So $$dfrac{1}{sqrt x} = dfrac{5 pm sqrt{33}}{4}$$



                  We can ignore $dfrac{1}{sqrt x} = dfrac{5 - sqrt{33}}{4}$ since the number on the right side is negative.



                  So we get $$sqrt x = dfrac{4}{5+sqrt{33}}= dfrac{sqrt{33}-5}{2}$$



                  and $$x = dfrac{29-5sqrt{33}}{2}$$



                  Problem $(5)$ for example, can be written as



                  begin{align}
                  3color{red}{(w^2-2)}^2 -8color{red}{(w^2-2)} + 4 &= 0 \
                  (3color{red}{(w^2-2)} - 2)(color{red}{(w^2-2)} - 2) &= 0 \
                  w^2-2= dfrac 23 &text{ or } w^2-2 = 2 \
                  w^2 = dfrac 83 &text{ or } w^2 = 4 \
                  w &in left{dfrac 23 sqrt 6, -dfrac 23 sqrt 6, 2, -2 right}
                  end{align}



                  You can solve the others similarly.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 1 hour ago

























                  answered 1 hour ago









                  steven gregory

                  17.5k22257




                  17.5k22257






























                       

                      draft saved


                      draft discarded



















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012370%2fwhy-is-my-solution-incorrect-for-solving-these-quadratic-equations%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bundesstraße 106

                      Verónica Boquete

                      Ida-Boy-Ed-Garten