Prove that $sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k}=frac{n!}{x(x+1)cdots(x+n)}$.
up vote
3
down vote
favorite
Given the following formula
$$
sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k},.
$$
How can I show that this is equal to
$$
frac{n!}{x(x+1)cdots(x+n)},?
$$
summation factorial partial-fractions rational-functions
add a comment |
up vote
3
down vote
favorite
Given the following formula
$$
sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k},.
$$
How can I show that this is equal to
$$
frac{n!}{x(x+1)cdots(x+n)},?
$$
summation factorial partial-fractions rational-functions
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 at 16:47
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Given the following formula
$$
sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k},.
$$
How can I show that this is equal to
$$
frac{n!}{x(x+1)cdots(x+n)},?
$$
summation factorial partial-fractions rational-functions
Given the following formula
$$
sum^n_{k=0}frac{(-1)^k}{k+x}binom{n}{k},.
$$
How can I show that this is equal to
$$
frac{n!}{x(x+1)cdots(x+n)},?
$$
summation factorial partial-fractions rational-functions
summation factorial partial-fractions rational-functions
edited Nov 22 at 17:12
Batominovski
31.8k23189
31.8k23189
asked Nov 19 at 15:51
RedPen
207112
207112
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 at 16:47
add a comment |
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 at 16:47
1
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 at 16:10
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 at 16:39
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 at 16:47
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 at 16:47
add a comment |
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
add a comment |
up vote
3
down vote
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
add a comment |
up vote
2
down vote
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
add a comment |
up vote
2
down vote
accepted
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
Induction step:
$$begin{align}
sum_{k=0}^{n+1}&frac{(-1)^k}{x+k}binom{n+1}k=frac1x+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}left[binom nk+binom n{k-1}right]
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}+sum_{k=1}^{n}frac{(-1)^k}{x+k}binom{n}{k-1}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-sum_{k=0}^{n-1}frac{(-1)^k}{(x+1)+k}binom{n}{k}
\&=frac{n!}{x(x+1)cdots(x+n)}+frac{(-1)^{n+1}}{x+n+1}-frac{n!}{(x+1)(x+2)cdots(x+n+1)}+frac{(-1)^n}{x+n+1}
\&=frac{n!(x+n+1)-n!x}{x(x+1)cdots(x+n+1)}=frac{(n+1)!}{x(x+1)cdots(x+n+1)}
end{align}$$
edited 2 days ago
darij grinberg
10.1k32961
10.1k32961
answered Nov 19 at 16:35
ajotatxe
52.1k23688
52.1k23688
add a comment |
add a comment |
up vote
3
down vote
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
add a comment |
up vote
3
down vote
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
add a comment |
up vote
3
down vote
up vote
3
down vote
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
Consider the (unique) polynomial $p(x)inmathbb{Q}[x]$ of degree at most $n$ such that $p(-k)=1$ for all $k=0,1,2,ldots,n$. Clearly, $p(x)$ is the constant polynomial $1$.
However, using Lagrange interpolation, we have
$$p(x)=sum_{k=0}^n,p(-k),frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)},,$$
where $[n]:={0,1,2,ldots,n}$. This means
$$1=sum_{k=0}^n,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{prodlimits_{jin[n]setminus{k}},(-k+j)}=sum_{k=0}^n,(-1)^k,frac{prodlimits_{jin[n]setminus{k}},(x+j)}{k!,(n-k)!},.$$
Multiplying both sides by $dfrac{n!}{prodlimits_{jin[n]},(x+j)}$ yields
$$frac{n!}{prodlimits_{j=0}^n,(x+j)}=sum_{k=0}^n,(-1)^k,left(frac{n!}{k!,(n-k)!}right),frac{1}{x+k}=sum_{k=0}^n,binom{n}{k},frac{(-1)^k}{x+k},.$$
edited 2 days ago
darij grinberg
10.1k32961
10.1k32961
answered Nov 22 at 17:11
Batominovski
31.8k23189
31.8k23189
add a comment |
add a comment |
up vote
2
down vote
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
add a comment |
up vote
2
down vote
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
add a comment |
up vote
2
down vote
up vote
2
down vote
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
With $ds{Repars{x} > 0}$:
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{n}{pars{-1}^{k} over k + x}{n choose k}} =
sum_{k = 0}^{n}pars{-1}^{k}
pars{int_{0}^{1}t^{k + x - 1},dd t}{n choose k}
\[5mm] = &
int_{0}^{1}t^{x - 1}sum_{k = 0}^{n}
{n choose k}pars{-t}^{k},dd t
\[5mm] = &
int_{0}^{1}t^{x - 1},pars{1 - t}^{n},dd t =
mrm{B}pars{x,n + 1} pars{~mrm{B}: Beta Function~}
\[5mm] = &
{Gammapars{x}Gammapars{n + 1} over Gammapars{x + n + 1}}
phantom{= mrm{B}pars{x,n + 1},,,,,,,,,,,,}
pars{~Gamma: Gamma Function~}
\[5mm] = &
{n! over Gammapars{x + n + 1}/Gammapars{x}} =
{n! over x^{overline{n +1}}} =
bbx{n! over xpars{x + 1}cdotspars{x + n}}
end{align}
edited 2 days ago
answered 2 days ago
Felix Marin
66k7107139
66k7107139
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005100%2fprove-that-sumn-k-0-frac-1kkx-binomnk-fracnxx1-cdotsx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Both functions have the same simple poles, with the same residues. Or you may just use induction on $n$.
– Jack D'Aurizio
Nov 19 at 16:10
One of several links that you may consult is at this MSE post.
– Marko Riedel
Nov 19 at 16:39
Or alternatively, this MSE post II.
– Marko Riedel
Nov 19 at 16:47