Residue of order 3 -
up vote
1
down vote
favorite
Find the Laurent Series for the function
begin{align}
f(z) = frac{1}{(z^2+4)^3}
end{align}
about the isolated singular pole $z = 2i$. What is the pole order? What is the residue at the pole?
My attempt:
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z+2i)^3(z-2i)^3}\
end{align}
Here we see $z=2i$ is a 3rd order pole.
A Laurent series is defined with respect to a particular non-analytic point $z_0$ and a path of integration C. The path of integration must lie in an annulus surrounding $z_0$ and so
begin{align}
f(z) &= sum_{n=-infty}^infty a_n(z-z_0)^n
% = sum_{n=0}^infty a_n(z-z_0)^{n}
% + sum_{n=1}^infty b_n(z-z_0)^{n}
end{align}
where
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{n+1}}\
% && text{Regular Part}&\
% b_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{-n-1}} label{eq:laurentb}
% && text{Principle Part} &
end{align}
We find the $a_n$ term using $z_0=2i$,
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{frac{1}{(z+2i)^3(z-2i)^3}}{(z-2i)^{n+1}}\
a_n &= frac{1}{2pi i}oint_C frac{1}{(z+2i)^3(z-2i)^{n+4}}
end{align}
and from Cauchy's Integral Formula we can find the residue $(n=-1)$ term,
begin{align}
a_{(-1)}&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{-1+4}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{3}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(sqrt{z}+sqrt{2i})}
frac{1}{(z-2i)(sqrt{z}-sqrt{2i})}????
end{align}
I can't seem to get anywhere near a correct answer ($Res(f;2i) = -3i/512$). I'm supposed to use the Laurent expansion at $z=2i$ and ultimately find the $z^-1$ coefficient, but I'm so lost.... I've also tried partial fraction expansion, but am running in circles. Engineering student here, so be nice ;)
complex-analysis residue-calculus laurent-series
New contributor
add a comment |
up vote
1
down vote
favorite
Find the Laurent Series for the function
begin{align}
f(z) = frac{1}{(z^2+4)^3}
end{align}
about the isolated singular pole $z = 2i$. What is the pole order? What is the residue at the pole?
My attempt:
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z+2i)^3(z-2i)^3}\
end{align}
Here we see $z=2i$ is a 3rd order pole.
A Laurent series is defined with respect to a particular non-analytic point $z_0$ and a path of integration C. The path of integration must lie in an annulus surrounding $z_0$ and so
begin{align}
f(z) &= sum_{n=-infty}^infty a_n(z-z_0)^n
% = sum_{n=0}^infty a_n(z-z_0)^{n}
% + sum_{n=1}^infty b_n(z-z_0)^{n}
end{align}
where
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{n+1}}\
% && text{Regular Part}&\
% b_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{-n-1}} label{eq:laurentb}
% && text{Principle Part} &
end{align}
We find the $a_n$ term using $z_0=2i$,
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{frac{1}{(z+2i)^3(z-2i)^3}}{(z-2i)^{n+1}}\
a_n &= frac{1}{2pi i}oint_C frac{1}{(z+2i)^3(z-2i)^{n+4}}
end{align}
and from Cauchy's Integral Formula we can find the residue $(n=-1)$ term,
begin{align}
a_{(-1)}&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{-1+4}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{3}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(sqrt{z}+sqrt{2i})}
frac{1}{(z-2i)(sqrt{z}-sqrt{2i})}????
end{align}
I can't seem to get anywhere near a correct answer ($Res(f;2i) = -3i/512$). I'm supposed to use the Laurent expansion at $z=2i$ and ultimately find the $z^-1$ coefficient, but I'm so lost.... I've also tried partial fraction expansion, but am running in circles. Engineering student here, so be nice ;)
complex-analysis residue-calculus laurent-series
New contributor
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Find the Laurent Series for the function
begin{align}
f(z) = frac{1}{(z^2+4)^3}
end{align}
about the isolated singular pole $z = 2i$. What is the pole order? What is the residue at the pole?
My attempt:
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z+2i)^3(z-2i)^3}\
end{align}
Here we see $z=2i$ is a 3rd order pole.
A Laurent series is defined with respect to a particular non-analytic point $z_0$ and a path of integration C. The path of integration must lie in an annulus surrounding $z_0$ and so
begin{align}
f(z) &= sum_{n=-infty}^infty a_n(z-z_0)^n
% = sum_{n=0}^infty a_n(z-z_0)^{n}
% + sum_{n=1}^infty b_n(z-z_0)^{n}
end{align}
where
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{n+1}}\
% && text{Regular Part}&\
% b_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{-n-1}} label{eq:laurentb}
% && text{Principle Part} &
end{align}
We find the $a_n$ term using $z_0=2i$,
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{frac{1}{(z+2i)^3(z-2i)^3}}{(z-2i)^{n+1}}\
a_n &= frac{1}{2pi i}oint_C frac{1}{(z+2i)^3(z-2i)^{n+4}}
end{align}
and from Cauchy's Integral Formula we can find the residue $(n=-1)$ term,
begin{align}
a_{(-1)}&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{-1+4}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{3}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(sqrt{z}+sqrt{2i})}
frac{1}{(z-2i)(sqrt{z}-sqrt{2i})}????
end{align}
I can't seem to get anywhere near a correct answer ($Res(f;2i) = -3i/512$). I'm supposed to use the Laurent expansion at $z=2i$ and ultimately find the $z^-1$ coefficient, but I'm so lost.... I've also tried partial fraction expansion, but am running in circles. Engineering student here, so be nice ;)
complex-analysis residue-calculus laurent-series
New contributor
Find the Laurent Series for the function
begin{align}
f(z) = frac{1}{(z^2+4)^3}
end{align}
about the isolated singular pole $z = 2i$. What is the pole order? What is the residue at the pole?
My attempt:
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z+2i)^3(z-2i)^3}\
end{align}
Here we see $z=2i$ is a 3rd order pole.
A Laurent series is defined with respect to a particular non-analytic point $z_0$ and a path of integration C. The path of integration must lie in an annulus surrounding $z_0$ and so
begin{align}
f(z) &= sum_{n=-infty}^infty a_n(z-z_0)^n
% = sum_{n=0}^infty a_n(z-z_0)^{n}
% + sum_{n=1}^infty b_n(z-z_0)^{n}
end{align}
where
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{n+1}}\
% && text{Regular Part}&\
% b_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{-n-1}} label{eq:laurentb}
% && text{Principle Part} &
end{align}
We find the $a_n$ term using $z_0=2i$,
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{frac{1}{(z+2i)^3(z-2i)^3}}{(z-2i)^{n+1}}\
a_n &= frac{1}{2pi i}oint_C frac{1}{(z+2i)^3(z-2i)^{n+4}}
end{align}
and from Cauchy's Integral Formula we can find the residue $(n=-1)$ term,
begin{align}
a_{(-1)}&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{-1+4}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{3}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(sqrt{z}+sqrt{2i})}
frac{1}{(z-2i)(sqrt{z}-sqrt{2i})}????
end{align}
I can't seem to get anywhere near a correct answer ($Res(f;2i) = -3i/512$). I'm supposed to use the Laurent expansion at $z=2i$ and ultimately find the $z^-1$ coefficient, but I'm so lost.... I've also tried partial fraction expansion, but am running in circles. Engineering student here, so be nice ;)
complex-analysis residue-calculus laurent-series
complex-analysis residue-calculus laurent-series
New contributor
New contributor
New contributor
asked Nov 17 at 0:59
niagarajohn
186
186
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.
$$
begin{aligned}
frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
&=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
&=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
end{aligned}
$$
Therefore,
$$
begin{aligned}
f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
&=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
end{aligned}
$$
Using the formula
$$
frac{1}{1-z}=sum_{nge0}z^n
$$
you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.
Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
– niagarajohn
Nov 17 at 2:14
Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
– niagarajohn
Nov 17 at 2:28
1
I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
– niagarajohn
Nov 17 at 4:09
add a comment |
up vote
0
down vote
Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
end{align}
Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
begin{align}
f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
end{align}
To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
begin{align}
(z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
end{align}
Differentiating both sides, we find
begin{align}
frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
end{align}
and in the limit where $zto z_0$,
begin{align}
a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
end{align}
which, of course, is the residue of the function at $z=2i$. Therefore,
begin{align}
f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
&= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
frac{1/4i}{(1+frac{z-2i}{4i})})\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
1-frac{z-2i}{4i}
+(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
+(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
-frac{1}{4i}
+frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
+frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]
end{align}
After simplifying, we find the residue is $-3i/512$ and,
begin{equation}
boxed{
f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
-frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
}
end{equation}
New contributor
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.
$$
begin{aligned}
frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
&=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
&=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
end{aligned}
$$
Therefore,
$$
begin{aligned}
f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
&=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
end{aligned}
$$
Using the formula
$$
frac{1}{1-z}=sum_{nge0}z^n
$$
you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.
Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
– niagarajohn
Nov 17 at 2:14
Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
– niagarajohn
Nov 17 at 2:28
1
I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
– niagarajohn
Nov 17 at 4:09
add a comment |
up vote
1
down vote
accepted
Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.
$$
begin{aligned}
frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
&=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
&=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
end{aligned}
$$
Therefore,
$$
begin{aligned}
f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
&=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
end{aligned}
$$
Using the formula
$$
frac{1}{1-z}=sum_{nge0}z^n
$$
you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.
Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
– niagarajohn
Nov 17 at 2:14
Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
– niagarajohn
Nov 17 at 2:28
1
I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
– niagarajohn
Nov 17 at 4:09
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.
$$
begin{aligned}
frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
&=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
&=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
end{aligned}
$$
Therefore,
$$
begin{aligned}
f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
&=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
end{aligned}
$$
Using the formula
$$
frac{1}{1-z}=sum_{nge0}z^n
$$
you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.
Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.
$$
begin{aligned}
frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
&=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
&=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
end{aligned}
$$
Therefore,
$$
begin{aligned}
f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
&=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
end{aligned}
$$
Using the formula
$$
frac{1}{1-z}=sum_{nge0}z^n
$$
you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.
answered Nov 17 at 1:40
AccidentalFourierTransform
1,425827
1,425827
Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
– niagarajohn
Nov 17 at 2:14
Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
– niagarajohn
Nov 17 at 2:28
1
I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
– niagarajohn
Nov 17 at 4:09
add a comment |
Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
– niagarajohn
Nov 17 at 2:14
Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
– niagarajohn
Nov 17 at 2:28
1
I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
– niagarajohn
Nov 17 at 4:09
Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
– niagarajohn
Nov 17 at 2:14
Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
– niagarajohn
Nov 17 at 2:14
Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
– niagarajohn
Nov 17 at 2:28
Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
– niagarajohn
Nov 17 at 2:28
1
1
I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
– niagarajohn
Nov 17 at 4:09
I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
– niagarajohn
Nov 17 at 4:09
add a comment |
up vote
0
down vote
Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
end{align}
Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
begin{align}
f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
end{align}
To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
begin{align}
(z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
end{align}
Differentiating both sides, we find
begin{align}
frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
end{align}
and in the limit where $zto z_0$,
begin{align}
a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
end{align}
which, of course, is the residue of the function at $z=2i$. Therefore,
begin{align}
f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
&= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
frac{1/4i}{(1+frac{z-2i}{4i})})\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
1-frac{z-2i}{4i}
+(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
+(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
-frac{1}{4i}
+frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
+frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]
end{align}
After simplifying, we find the residue is $-3i/512$ and,
begin{equation}
boxed{
f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
-frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
}
end{equation}
New contributor
add a comment |
up vote
0
down vote
Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
end{align}
Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
begin{align}
f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
end{align}
To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
begin{align}
(z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
end{align}
Differentiating both sides, we find
begin{align}
frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
end{align}
and in the limit where $zto z_0$,
begin{align}
a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
end{align}
which, of course, is the residue of the function at $z=2i$. Therefore,
begin{align}
f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
&= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
frac{1/4i}{(1+frac{z-2i}{4i})})\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
1-frac{z-2i}{4i}
+(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
+(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
-frac{1}{4i}
+frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
+frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]
end{align}
After simplifying, we find the residue is $-3i/512$ and,
begin{equation}
boxed{
f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
-frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
}
end{equation}
New contributor
add a comment |
up vote
0
down vote
up vote
0
down vote
Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
end{align}
Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
begin{align}
f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
end{align}
To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
begin{align}
(z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
end{align}
Differentiating both sides, we find
begin{align}
frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
end{align}
and in the limit where $zto z_0$,
begin{align}
a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
end{align}
which, of course, is the residue of the function at $z=2i$. Therefore,
begin{align}
f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
&= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
frac{1/4i}{(1+frac{z-2i}{4i})})\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
1-frac{z-2i}{4i}
+(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
+(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
-frac{1}{4i}
+frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
+frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]
end{align}
After simplifying, we find the residue is $-3i/512$ and,
begin{equation}
boxed{
f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
-frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
}
end{equation}
New contributor
Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
end{align}
Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
begin{align}
f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
end{align}
To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
begin{align}
(z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
end{align}
Differentiating both sides, we find
begin{align}
frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
end{align}
and in the limit where $zto z_0$,
begin{align}
a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
end{align}
which, of course, is the residue of the function at $z=2i$. Therefore,
begin{align}
f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
&= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
frac{1/4i}{(1+frac{z-2i}{4i})})\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
1-frac{z-2i}{4i}
+(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
+(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
-frac{1}{4i}
+frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
+frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]\
%
&= frac{1}{(z-2i)^3}frac{1}{8i}[
frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
+frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
+cdots]
end{align}
After simplifying, we find the residue is $-3i/512$ and,
begin{equation}
boxed{
f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
-frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
}
end{equation}
New contributor
New contributor
answered Nov 17 at 19:02
niagarajohn
186
186
New contributor
New contributor
add a comment |
add a comment |
niagarajohn is a new contributor. Be nice, and check out our Code of Conduct.
niagarajohn is a new contributor. Be nice, and check out our Code of Conduct.
niagarajohn is a new contributor. Be nice, and check out our Code of Conduct.
niagarajohn is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001836%2fresidue-of-order-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown