Residue of order 3 -











up vote
1
down vote

favorite












Find the Laurent Series for the function
begin{align}
f(z) = frac{1}{(z^2+4)^3}
end{align}

about the isolated singular pole $z = 2i$. What is the pole order? What is the residue at the pole?



My attempt:
begin{align}
f(z) &= frac{1}{(z^2+4)^3}\
&= frac{1}{(z+2i)^3(z-2i)^3}\
end{align}

Here we see $z=2i$ is a 3rd order pole.



A Laurent series is defined with respect to a particular non-analytic point $z_0$ and a path of integration C. The path of integration must lie in an annulus surrounding $z_0$ and so
begin{align}
f(z) &= sum_{n=-infty}^infty a_n(z-z_0)^n
% = sum_{n=0}^infty a_n(z-z_0)^{n}
% + sum_{n=1}^infty b_n(z-z_0)^{n}
end{align}

where
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{n+1}}\
% && text{Regular Part}&\
% b_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{-n-1}} label{eq:laurentb}
% && text{Principle Part} &
end{align}

We find the $a_n$ term using $z_0=2i$,
begin{align}
a_n &= frac{1}{2pi i}oint_C frac{frac{1}{(z+2i)^3(z-2i)^3}}{(z-2i)^{n+1}}\
a_n &= frac{1}{2pi i}oint_C frac{1}{(z+2i)^3(z-2i)^{n+4}}
end{align}

and from Cauchy's Integral Formula we can find the residue $(n=-1)$ term,
begin{align}
a_{(-1)}&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{-1+4}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{3}}\
&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(sqrt{z}+sqrt{2i})}
frac{1}{(z-2i)(sqrt{z}-sqrt{2i})}????
end{align}



I can't seem to get anywhere near a correct answer ($Res(f;2i) = -3i/512$). I'm supposed to use the Laurent expansion at $z=2i$ and ultimately find the $z^-1$ coefficient, but I'm so lost.... I've also tried partial fraction expansion, but am running in circles. Engineering student here, so be nice ;)










share|cite|improve this question







New contributor




niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    up vote
    1
    down vote

    favorite












    Find the Laurent Series for the function
    begin{align}
    f(z) = frac{1}{(z^2+4)^3}
    end{align}

    about the isolated singular pole $z = 2i$. What is the pole order? What is the residue at the pole?



    My attempt:
    begin{align}
    f(z) &= frac{1}{(z^2+4)^3}\
    &= frac{1}{(z+2i)^3(z-2i)^3}\
    end{align}

    Here we see $z=2i$ is a 3rd order pole.



    A Laurent series is defined with respect to a particular non-analytic point $z_0$ and a path of integration C. The path of integration must lie in an annulus surrounding $z_0$ and so
    begin{align}
    f(z) &= sum_{n=-infty}^infty a_n(z-z_0)^n
    % = sum_{n=0}^infty a_n(z-z_0)^{n}
    % + sum_{n=1}^infty b_n(z-z_0)^{n}
    end{align}

    where
    begin{align}
    a_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{n+1}}\
    % && text{Regular Part}&\
    % b_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{-n-1}} label{eq:laurentb}
    % && text{Principle Part} &
    end{align}

    We find the $a_n$ term using $z_0=2i$,
    begin{align}
    a_n &= frac{1}{2pi i}oint_C frac{frac{1}{(z+2i)^3(z-2i)^3}}{(z-2i)^{n+1}}\
    a_n &= frac{1}{2pi i}oint_C frac{1}{(z+2i)^3(z-2i)^{n+4}}
    end{align}

    and from Cauchy's Integral Formula we can find the residue $(n=-1)$ term,
    begin{align}
    a_{(-1)}&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{-1+4}}\
    &=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{3}}\
    &=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(sqrt{z}+sqrt{2i})}
    frac{1}{(z-2i)(sqrt{z}-sqrt{2i})}????
    end{align}



    I can't seem to get anywhere near a correct answer ($Res(f;2i) = -3i/512$). I'm supposed to use the Laurent expansion at $z=2i$ and ultimately find the $z^-1$ coefficient, but I'm so lost.... I've also tried partial fraction expansion, but am running in circles. Engineering student here, so be nice ;)










    share|cite|improve this question







    New contributor




    niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Find the Laurent Series for the function
      begin{align}
      f(z) = frac{1}{(z^2+4)^3}
      end{align}

      about the isolated singular pole $z = 2i$. What is the pole order? What is the residue at the pole?



      My attempt:
      begin{align}
      f(z) &= frac{1}{(z^2+4)^3}\
      &= frac{1}{(z+2i)^3(z-2i)^3}\
      end{align}

      Here we see $z=2i$ is a 3rd order pole.



      A Laurent series is defined with respect to a particular non-analytic point $z_0$ and a path of integration C. The path of integration must lie in an annulus surrounding $z_0$ and so
      begin{align}
      f(z) &= sum_{n=-infty}^infty a_n(z-z_0)^n
      % = sum_{n=0}^infty a_n(z-z_0)^{n}
      % + sum_{n=1}^infty b_n(z-z_0)^{n}
      end{align}

      where
      begin{align}
      a_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{n+1}}\
      % && text{Regular Part}&\
      % b_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{-n-1}} label{eq:laurentb}
      % && text{Principle Part} &
      end{align}

      We find the $a_n$ term using $z_0=2i$,
      begin{align}
      a_n &= frac{1}{2pi i}oint_C frac{frac{1}{(z+2i)^3(z-2i)^3}}{(z-2i)^{n+1}}\
      a_n &= frac{1}{2pi i}oint_C frac{1}{(z+2i)^3(z-2i)^{n+4}}
      end{align}

      and from Cauchy's Integral Formula we can find the residue $(n=-1)$ term,
      begin{align}
      a_{(-1)}&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{-1+4}}\
      &=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{3}}\
      &=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(sqrt{z}+sqrt{2i})}
      frac{1}{(z-2i)(sqrt{z}-sqrt{2i})}????
      end{align}



      I can't seem to get anywhere near a correct answer ($Res(f;2i) = -3i/512$). I'm supposed to use the Laurent expansion at $z=2i$ and ultimately find the $z^-1$ coefficient, but I'm so lost.... I've also tried partial fraction expansion, but am running in circles. Engineering student here, so be nice ;)










      share|cite|improve this question







      New contributor




      niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      Find the Laurent Series for the function
      begin{align}
      f(z) = frac{1}{(z^2+4)^3}
      end{align}

      about the isolated singular pole $z = 2i$. What is the pole order? What is the residue at the pole?



      My attempt:
      begin{align}
      f(z) &= frac{1}{(z^2+4)^3}\
      &= frac{1}{(z+2i)^3(z-2i)^3}\
      end{align}

      Here we see $z=2i$ is a 3rd order pole.



      A Laurent series is defined with respect to a particular non-analytic point $z_0$ and a path of integration C. The path of integration must lie in an annulus surrounding $z_0$ and so
      begin{align}
      f(z) &= sum_{n=-infty}^infty a_n(z-z_0)^n
      % = sum_{n=0}^infty a_n(z-z_0)^{n}
      % + sum_{n=1}^infty b_n(z-z_0)^{n}
      end{align}

      where
      begin{align}
      a_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{n+1}}\
      % && text{Regular Part}&\
      % b_n &= frac{1}{2pi i}oint_C frac{f(z)dz}{(z-z_0)^{-n-1}} label{eq:laurentb}
      % && text{Principle Part} &
      end{align}

      We find the $a_n$ term using $z_0=2i$,
      begin{align}
      a_n &= frac{1}{2pi i}oint_C frac{frac{1}{(z+2i)^3(z-2i)^3}}{(z-2i)^{n+1}}\
      a_n &= frac{1}{2pi i}oint_C frac{1}{(z+2i)^3(z-2i)^{n+4}}
      end{align}

      and from Cauchy's Integral Formula we can find the residue $(n=-1)$ term,
      begin{align}
      a_{(-1)}&=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{-1+4}}\
      &=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(z-2i)^{3}}\
      &=frac{1}{2pi i}oint_C frac{1}{(z+2i)^{3}(sqrt{z}+sqrt{2i})}
      frac{1}{(z-2i)(sqrt{z}-sqrt{2i})}????
      end{align}



      I can't seem to get anywhere near a correct answer ($Res(f;2i) = -3i/512$). I'm supposed to use the Laurent expansion at $z=2i$ and ultimately find the $z^-1$ coefficient, but I'm so lost.... I've also tried partial fraction expansion, but am running in circles. Engineering student here, so be nice ;)







      complex-analysis residue-calculus laurent-series






      share|cite|improve this question







      New contributor




      niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Nov 17 at 0:59









      niagarajohn

      186




      186




      New contributor




      niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.



          $$
          begin{aligned}
          frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
          &=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
          &=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
          end{aligned}
          $$



          Therefore,
          $$
          begin{aligned}
          f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
          &=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
          end{aligned}
          $$



          Using the formula
          $$
          frac{1}{1-z}=sum_{nge0}z^n
          $$

          you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.






          share|cite|improve this answer





















          • Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
            – niagarajohn
            Nov 17 at 2:14










          • Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
            – niagarajohn
            Nov 17 at 2:28






          • 1




            I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
            – niagarajohn
            Nov 17 at 4:09


















          up vote
          0
          down vote













          Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
          begin{align}
          f(z) &= frac{1}{(z^2+4)^3}\
          &= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
          end{align}

          Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
          begin{align}
          f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
          end{align}

          To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
          begin{align}
          (z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
          end{align}

          Differentiating both sides, we find
          begin{align}
          frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
          end{align}

          and in the limit where $zto z_0$,
          begin{align}
          a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
          end{align}

          which, of course, is the residue of the function at $z=2i$. Therefore,
          begin{align}
          f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
          &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
          frac{1/4i}{(1+frac{z-2i}{4i})})\
          %
          &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
          1-frac{z-2i}{4i}
          +(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
          +(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
          +cdots]\
          %
          &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
          -frac{1}{4i}
          +frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
          +frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
          +cdots]\
          %
          &= frac{1}{(z-2i)^3}frac{1}{8i}[
          frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
          +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
          +cdots]\
          %
          &= frac{1}{(z-2i)^3}frac{1}{8i}[
          frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
          +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
          +cdots]
          end{align}

          After simplifying, we find the residue is $-3i/512$ and,
          begin{equation}
          boxed{
          f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
          -frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
          }
          end{equation}






          share|cite|improve this answer








          New contributor




          niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.


















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            niagarajohn is a new contributor. Be nice, and check out our Code of Conduct.










             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001836%2fresidue-of-order-3%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.



            $$
            begin{aligned}
            frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
            &=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
            &=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
            end{aligned}
            $$



            Therefore,
            $$
            begin{aligned}
            f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
            &=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
            end{aligned}
            $$



            Using the formula
            $$
            frac{1}{1-z}=sum_{nge0}z^n
            $$

            you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.






            share|cite|improve this answer





















            • Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
              – niagarajohn
              Nov 17 at 2:14










            • Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
              – niagarajohn
              Nov 17 at 2:28






            • 1




              I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
              – niagarajohn
              Nov 17 at 4:09















            up vote
            1
            down vote



            accepted










            Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.



            $$
            begin{aligned}
            frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
            &=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
            &=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
            end{aligned}
            $$



            Therefore,
            $$
            begin{aligned}
            f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
            &=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
            end{aligned}
            $$



            Using the formula
            $$
            frac{1}{1-z}=sum_{nge0}z^n
            $$

            you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.






            share|cite|improve this answer





















            • Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
              – niagarajohn
              Nov 17 at 2:14










            • Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
              – niagarajohn
              Nov 17 at 2:28






            • 1




              I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
              – niagarajohn
              Nov 17 at 4:09













            up vote
            1
            down vote



            accepted







            up vote
            1
            down vote



            accepted






            Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.



            $$
            begin{aligned}
            frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
            &=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
            &=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
            end{aligned}
            $$



            Therefore,
            $$
            begin{aligned}
            f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
            &=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
            end{aligned}
            $$



            Using the formula
            $$
            frac{1}{1-z}=sum_{nge0}z^n
            $$

            you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.






            share|cite|improve this answer












            Integration is completely unnecessary here. More generally, never integrate if you can differentiate. And most of the times, geometric series is more than enough.



            $$
            begin{aligned}
            frac{1}{(z+2i)^3}&=frac{1}{2}frac{mathrm d^2}{mathrm dz^2}frac{1}{(z-2i)+4i}\
            &=frac12frac{mathrm d^2}{mathrm dz^2}left[-frac i4+frac{1}{16}(z-2i)+frac{i}{64}(z-2i)^2+cdotsright]\
            &=frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdots
            end{aligned}
            $$



            Therefore,
            $$
            begin{aligned}
            f(x)&=frac{1}{(z-2i)^3}left[frac{i}{64}-frac{3}{256}(z-2i)-frac{3i}{512}(z-2i)^2+cdotsright]\
            &=frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}color{red}{-frac{3i}{512}(z-2i)^{-1}}+cdots
            end{aligned}
            $$



            Using the formula
            $$
            frac{1}{1-z}=sum_{nge0}z^n
            $$

            you should be able to write down a general formula for $a_n$, using the steps described above. I leave this to you.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 17 at 1:40









            AccidentalFourierTransform

            1,425827




            1,425827












            • Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
              – niagarajohn
              Nov 17 at 2:14










            • Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
              – niagarajohn
              Nov 17 at 2:28






            • 1




              I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
              – niagarajohn
              Nov 17 at 4:09


















            • Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
              – niagarajohn
              Nov 17 at 2:14










            • Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
              – niagarajohn
              Nov 17 at 2:28






            • 1




              I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
              – niagarajohn
              Nov 17 at 4:09
















            Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
            – niagarajohn
            Nov 17 at 2:14




            Thanks for this. I assume the initial step is from the residue formula $$operatorname{Res}(f,c) = frac{1}{(n-1)!} lim_{z to c} frac{d^{n-1}}{dz^{n-1}} left( (z-c)^n f(z) right)$$
            – niagarajohn
            Nov 17 at 2:14












            Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
            – niagarajohn
            Nov 17 at 2:28




            Why is it that we expand the $frac{1}{(z+2i)^3}$ term rather than the other?
            – niagarajohn
            Nov 17 at 2:28




            1




            1




            I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
            – niagarajohn
            Nov 17 at 4:09




            I see now, using the fact that $$ frac{operatorname{d}^k}{operatorname{d}!z^k}left(frac{1}{1-z}right) = frac{k!}{(1-z)^{k+1}}$$. Thanks again @AccidentalFourierTransform
            – niagarajohn
            Nov 17 at 4:09










            up vote
            0
            down vote













            Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
            begin{align}
            f(z) &= frac{1}{(z^2+4)^3}\
            &= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
            end{align}

            Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
            begin{align}
            f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
            end{align}

            To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
            begin{align}
            (z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
            end{align}

            Differentiating both sides, we find
            begin{align}
            frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
            end{align}

            and in the limit where $zto z_0$,
            begin{align}
            a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
            end{align}

            which, of course, is the residue of the function at $z=2i$. Therefore,
            begin{align}
            f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
            &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
            frac{1/4i}{(1+frac{z-2i}{4i})})\
            %
            &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
            1-frac{z-2i}{4i}
            +(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
            +(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
            +cdots]\
            %
            &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
            -frac{1}{4i}
            +frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
            +frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
            +cdots]\
            %
            &= frac{1}{(z-2i)^3}frac{1}{8i}[
            frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
            +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
            +cdots]\
            %
            &= frac{1}{(z-2i)^3}frac{1}{8i}[
            frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
            +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
            +cdots]
            end{align}

            After simplifying, we find the residue is $-3i/512$ and,
            begin{equation}
            boxed{
            f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
            -frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
            }
            end{equation}






            share|cite|improve this answer








            New contributor




            niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






















              up vote
              0
              down vote













              Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
              begin{align}
              f(z) &= frac{1}{(z^2+4)^3}\
              &= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
              end{align}

              Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
              begin{align}
              f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
              end{align}

              To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
              begin{align}
              (z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
              end{align}

              Differentiating both sides, we find
              begin{align}
              frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
              end{align}

              and in the limit where $zto z_0$,
              begin{align}
              a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
              end{align}

              which, of course, is the residue of the function at $z=2i$. Therefore,
              begin{align}
              f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
              &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
              frac{1/4i}{(1+frac{z-2i}{4i})})\
              %
              &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
              1-frac{z-2i}{4i}
              +(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
              +(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
              +cdots]\
              %
              &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
              -frac{1}{4i}
              +frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
              +frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
              +cdots]\
              %
              &= frac{1}{(z-2i)^3}frac{1}{8i}[
              frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
              +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
              +cdots]\
              %
              &= frac{1}{(z-2i)^3}frac{1}{8i}[
              frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
              +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
              +cdots]
              end{align}

              After simplifying, we find the residue is $-3i/512$ and,
              begin{equation}
              boxed{
              f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
              -frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
              }
              end{equation}






              share|cite|improve this answer








              New contributor




              niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.




















                up vote
                0
                down vote










                up vote
                0
                down vote









                Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
                begin{align}
                f(z) &= frac{1}{(z^2+4)^3}\
                &= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
                end{align}

                Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
                begin{align}
                f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
                end{align}

                To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
                begin{align}
                (z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
                end{align}

                Differentiating both sides, we find
                begin{align}
                frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
                end{align}

                and in the limit where $zto z_0$,
                begin{align}
                a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
                end{align}

                which, of course, is the residue of the function at $z=2i$. Therefore,
                begin{align}
                f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
                &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
                frac{1/4i}{(1+frac{z-2i}{4i})})\
                %
                &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
                1-frac{z-2i}{4i}
                +(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
                +(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
                +cdots]\
                %
                &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
                -frac{1}{4i}
                +frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
                +frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
                +cdots]\
                %
                &= frac{1}{(z-2i)^3}frac{1}{8i}[
                frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
                +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
                +cdots]\
                %
                &= frac{1}{(z-2i)^3}frac{1}{8i}[
                frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
                +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
                +cdots]
                end{align}

                After simplifying, we find the residue is $-3i/512$ and,
                begin{equation}
                boxed{
                f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
                -frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
                }
                end{equation}






                share|cite|improve this answer








                New contributor




                niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.









                Here's my final answer (I use the physics package in Latex, sorry for the weird formatting in some areas):
                begin{align}
                f(z) &= frac{1}{(z^2+4)^3}\
                &= frac{1}{(z-2i)^3}frac{1}{(z+2i)^3}
                end{align}

                Here, we see third order poles at $z=pm2i$. The Laurent series expansion of $f(z)$ about $z=2i$ should have the form,
                begin{align}
                f(z) &= frac{a_{-3}}{(z-z_0)^{-3}}+ frac{a_{-2}}{(z-z_0)^{-2}} + frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2+cdots\
                end{align}

                To create an expandable geometric series for the $a_{-3}$ term, the following procedure can be used,
                begin{align}
                (z-z_0)^{3}f(z) &= a_{-3}+{a_{-2}}{(z-z_0)}+a_{-1}(z-z_0)^2 + a_0(z-z_0)^3 + a_1(z-z_0)^4 + a_2(z-z_0)^5+cdots
                end{align}

                Differentiating both sides, we find
                begin{align}
                frac{d^2}{dz^2}[(z-z_0)^{3}f(z)] &= (2cdot1)a_{-1} + sum_n^infty b_n(z-z_0)^n\
                end{align}

                and in the limit where $zto z_0$,
                begin{align}
                a_{-1}& = frac{1}{2}frac{d^2}{dz^2}[(z-z_0)^{3}f(z)]
                end{align}

                which, of course, is the residue of the function at $z=2i$. Therefore,
                begin{align}
                f(z) &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(frac{1}{(z+2i)})\
                &= frac{1}{(z-2i)^3}frac{1}{2}frac{d^2}{dz^2}(
                frac{1/4i}{(1+frac{z-2i}{4i})})\
                %
                &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d^2}{dz^2}[
                1-frac{z-2i}{4i}
                +(frac{z-2i}{4i})^2-(frac{z-2i}{4i})^3
                +(frac{z-2i}{4i})^4-(frac{z-2i}{4i})^5
                +cdots]\
                %
                &= frac{1}{(z-2i)^3}frac{1}{8i}frac{d}{dz}[
                -frac{1}{4i}
                +frac{2(z-2i)}{(4i)^2}-frac{3(z-2i)^2}{(4i)^3}
                +frac{4(z-2i)^3}{(4i)^4}-frac{5(z-2i)^4}{(4i)^5}
                +cdots]\
                %
                &= frac{1}{(z-2i)^3}frac{1}{8i}[
                frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
                +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
                +cdots]\
                %
                &= frac{1}{(z-2i)^3}frac{1}{8i}[
                frac{2cdot1}{(4i)^2}-frac{3cdot2(z-2i)}{(4i)^3}
                +frac{4cdot3(z-2i)^2}{(4i)^4}-frac{5cdot4(z-2i)^3}{(4i)^5}
                +cdots]
                end{align}

                After simplifying, we find the residue is $-3i/512$ and,
                begin{equation}
                boxed{
                f(z) = frac{i}{64}(z-2i)^{-3}-frac{3}{256}(z-2i)^{-2}
                -frac{3i}{512}(z-2i)^{-1}+frac{5}{2048}+cdots
                }
                end{equation}







                share|cite|improve this answer








                New contributor




                niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.









                share|cite|improve this answer



                share|cite|improve this answer






                New contributor




                niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.









                answered Nov 17 at 19:02









                niagarajohn

                186




                186




                New contributor




                niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.





                New contributor





                niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                niagarajohn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






















                    niagarajohn is a new contributor. Be nice, and check out our Code of Conduct.










                     

                    draft saved


                    draft discarded


















                    niagarajohn is a new contributor. Be nice, and check out our Code of Conduct.













                    niagarajohn is a new contributor. Be nice, and check out our Code of Conduct.












                    niagarajohn is a new contributor. Be nice, and check out our Code of Conduct.















                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001836%2fresidue-of-order-3%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten