Suppose $f$ is a measurable function st $|f(x)| leq c|x|^{-p} chi_{B(0,1)}(x)$for some $c > 0, p <n$....
up vote
0
down vote
favorite
Suppose $f: mathbb R^n to mathbb R$ is a measurable function such that $|f(x)| leq g(x)$, where $g(x) = c|x|^{-p} chi_{B(0,1)}(x)$for some $c > 0, p <n$. Prove $f$ is integrable.
This is from Bass exercise 11.21.
Let $tilde x=(x_1,...,x_{n-1}), x = (tilde x, x_n)$, and $f^{x_n}(tilde x) = f(x) : mathbb R^{n-1} to mathbb R$.
If $p leq 0$ then $g$ is integrable, so that $f$ also is, and we are done. So assume $p > 0$.
We are suggested to proceed by induction on $n$. The case for $n=1$ can be solved. Now assume the case holds for $n-1$, and let $epsilon > 0$ be so small that $p+epsilon$ is still smaller than $n$. Then $p-1 + epsilon < n-1$, and we can show that $|f^{x_n}(tilde x)| leq c|tilde x|^{-p+1-epsilon} chi_{tilde B(0,1)}(tilde x) |x|^{-1+epsilon}$. A person suggested to me that I should somehow use Dominated Convergence theorem and the fact that $|x|^{-1+epsilon}$ is integrable, but I am not sure how to proceed as such. Certainly, we may bound $g$ by $c|x|^p chi_{[0,1]^n}(x)$, but I am not sure what to do here. It seems like I have to use Tonell-Fubini somewhere...
I apologizw for mixing up the precise problem statement. The main problem is now correct; if there is any error in signs please construe as close you think it should be. Thank you.
Of course, this could be done in polar coordinates but I am specifically asking for one using indunction.
real-analysis measure-theory lebesgue-integral
add a comment |
up vote
0
down vote
favorite
Suppose $f: mathbb R^n to mathbb R$ is a measurable function such that $|f(x)| leq g(x)$, where $g(x) = c|x|^{-p} chi_{B(0,1)}(x)$for some $c > 0, p <n$. Prove $f$ is integrable.
This is from Bass exercise 11.21.
Let $tilde x=(x_1,...,x_{n-1}), x = (tilde x, x_n)$, and $f^{x_n}(tilde x) = f(x) : mathbb R^{n-1} to mathbb R$.
If $p leq 0$ then $g$ is integrable, so that $f$ also is, and we are done. So assume $p > 0$.
We are suggested to proceed by induction on $n$. The case for $n=1$ can be solved. Now assume the case holds for $n-1$, and let $epsilon > 0$ be so small that $p+epsilon$ is still smaller than $n$. Then $p-1 + epsilon < n-1$, and we can show that $|f^{x_n}(tilde x)| leq c|tilde x|^{-p+1-epsilon} chi_{tilde B(0,1)}(tilde x) |x|^{-1+epsilon}$. A person suggested to me that I should somehow use Dominated Convergence theorem and the fact that $|x|^{-1+epsilon}$ is integrable, but I am not sure how to proceed as such. Certainly, we may bound $g$ by $c|x|^p chi_{[0,1]^n}(x)$, but I am not sure what to do here. It seems like I have to use Tonell-Fubini somewhere...
I apologizw for mixing up the precise problem statement. The main problem is now correct; if there is any error in signs please construe as close you think it should be. Thank you.
Of course, this could be done in polar coordinates but I am specifically asking for one using indunction.
real-analysis measure-theory lebesgue-integral
1
What makes $g$ integrable for $p leq 0$? For all $p>0$ $f$ is integrable and this hardly requires a proof (because it is a bounded measurable function with com pact support). I wonder if you have some mistakes in the statement.
– Kavi Rama Murthy
Nov 20 at 9:35
The error was corrected: Just use the theorem on change of variables for $lambda^n$ by taking polar-coordinates. ($g$ depends only on the radius and then it is easy to see that we get the integrability in $x=0$ if and only if $n-1-p >-1$.)
– p4sch
Nov 20 at 10:25
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Suppose $f: mathbb R^n to mathbb R$ is a measurable function such that $|f(x)| leq g(x)$, where $g(x) = c|x|^{-p} chi_{B(0,1)}(x)$for some $c > 0, p <n$. Prove $f$ is integrable.
This is from Bass exercise 11.21.
Let $tilde x=(x_1,...,x_{n-1}), x = (tilde x, x_n)$, and $f^{x_n}(tilde x) = f(x) : mathbb R^{n-1} to mathbb R$.
If $p leq 0$ then $g$ is integrable, so that $f$ also is, and we are done. So assume $p > 0$.
We are suggested to proceed by induction on $n$. The case for $n=1$ can be solved. Now assume the case holds for $n-1$, and let $epsilon > 0$ be so small that $p+epsilon$ is still smaller than $n$. Then $p-1 + epsilon < n-1$, and we can show that $|f^{x_n}(tilde x)| leq c|tilde x|^{-p+1-epsilon} chi_{tilde B(0,1)}(tilde x) |x|^{-1+epsilon}$. A person suggested to me that I should somehow use Dominated Convergence theorem and the fact that $|x|^{-1+epsilon}$ is integrable, but I am not sure how to proceed as such. Certainly, we may bound $g$ by $c|x|^p chi_{[0,1]^n}(x)$, but I am not sure what to do here. It seems like I have to use Tonell-Fubini somewhere...
I apologizw for mixing up the precise problem statement. The main problem is now correct; if there is any error in signs please construe as close you think it should be. Thank you.
Of course, this could be done in polar coordinates but I am specifically asking for one using indunction.
real-analysis measure-theory lebesgue-integral
Suppose $f: mathbb R^n to mathbb R$ is a measurable function such that $|f(x)| leq g(x)$, where $g(x) = c|x|^{-p} chi_{B(0,1)}(x)$for some $c > 0, p <n$. Prove $f$ is integrable.
This is from Bass exercise 11.21.
Let $tilde x=(x_1,...,x_{n-1}), x = (tilde x, x_n)$, and $f^{x_n}(tilde x) = f(x) : mathbb R^{n-1} to mathbb R$.
If $p leq 0$ then $g$ is integrable, so that $f$ also is, and we are done. So assume $p > 0$.
We are suggested to proceed by induction on $n$. The case for $n=1$ can be solved. Now assume the case holds for $n-1$, and let $epsilon > 0$ be so small that $p+epsilon$ is still smaller than $n$. Then $p-1 + epsilon < n-1$, and we can show that $|f^{x_n}(tilde x)| leq c|tilde x|^{-p+1-epsilon} chi_{tilde B(0,1)}(tilde x) |x|^{-1+epsilon}$. A person suggested to me that I should somehow use Dominated Convergence theorem and the fact that $|x|^{-1+epsilon}$ is integrable, but I am not sure how to proceed as such. Certainly, we may bound $g$ by $c|x|^p chi_{[0,1]^n}(x)$, but I am not sure what to do here. It seems like I have to use Tonell-Fubini somewhere...
I apologizw for mixing up the precise problem statement. The main problem is now correct; if there is any error in signs please construe as close you think it should be. Thank you.
Of course, this could be done in polar coordinates but I am specifically asking for one using indunction.
real-analysis measure-theory lebesgue-integral
real-analysis measure-theory lebesgue-integral
edited Nov 20 at 10:34
asked Nov 20 at 9:13
Cute Brownie
978316
978316
1
What makes $g$ integrable for $p leq 0$? For all $p>0$ $f$ is integrable and this hardly requires a proof (because it is a bounded measurable function with com pact support). I wonder if you have some mistakes in the statement.
– Kavi Rama Murthy
Nov 20 at 9:35
The error was corrected: Just use the theorem on change of variables for $lambda^n$ by taking polar-coordinates. ($g$ depends only on the radius and then it is easy to see that we get the integrability in $x=0$ if and only if $n-1-p >-1$.)
– p4sch
Nov 20 at 10:25
add a comment |
1
What makes $g$ integrable for $p leq 0$? For all $p>0$ $f$ is integrable and this hardly requires a proof (because it is a bounded measurable function with com pact support). I wonder if you have some mistakes in the statement.
– Kavi Rama Murthy
Nov 20 at 9:35
The error was corrected: Just use the theorem on change of variables for $lambda^n$ by taking polar-coordinates. ($g$ depends only on the radius and then it is easy to see that we get the integrability in $x=0$ if and only if $n-1-p >-1$.)
– p4sch
Nov 20 at 10:25
1
1
What makes $g$ integrable for $p leq 0$? For all $p>0$ $f$ is integrable and this hardly requires a proof (because it is a bounded measurable function with com pact support). I wonder if you have some mistakes in the statement.
– Kavi Rama Murthy
Nov 20 at 9:35
What makes $g$ integrable for $p leq 0$? For all $p>0$ $f$ is integrable and this hardly requires a proof (because it is a bounded measurable function with com pact support). I wonder if you have some mistakes in the statement.
– Kavi Rama Murthy
Nov 20 at 9:35
The error was corrected: Just use the theorem on change of variables for $lambda^n$ by taking polar-coordinates. ($g$ depends only on the radius and then it is easy to see that we get the integrability in $x=0$ if and only if $n-1-p >-1$.)
– p4sch
Nov 20 at 10:25
The error was corrected: Just use the theorem on change of variables for $lambda^n$ by taking polar-coordinates. ($g$ depends only on the radius and then it is easy to see that we get the integrability in $x=0$ if and only if $n-1-p >-1$.)
– p4sch
Nov 20 at 10:25
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006099%2fsuppose-f-is-a-measurable-function-st-fx-leq-cx-p-chi-b0-1x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
What makes $g$ integrable for $p leq 0$? For all $p>0$ $f$ is integrable and this hardly requires a proof (because it is a bounded measurable function with com pact support). I wonder if you have some mistakes in the statement.
– Kavi Rama Murthy
Nov 20 at 9:35
The error was corrected: Just use the theorem on change of variables for $lambda^n$ by taking polar-coordinates. ($g$ depends only on the radius and then it is easy to see that we get the integrability in $x=0$ if and only if $n-1-p >-1$.)
– p4sch
Nov 20 at 10:25