Why does $int_{-infty}^infty R(x) dx$ converge iff the rational function $R(x)$ has degree of denom. at least...
up vote
0
down vote
favorite
I am readinf Ahlfors and came across the fact that:
$int_{-infty}^infty R(x) dx$, where $R(x)$ is a rational function, converges if and only if in the rational function $R(x)$ the degree of the denominator is at least two units higher than the degree of the numerator.
I am unsure of how to prove this fact rigorously. I do get that the condition on the degrees means roughly that $R(x)$ is approximately $frac cx$ (whose integral diverges) with $c$ a constant, but could anyone post a rigorus proof of this?
real-analysis complex-analysis rational-functions
add a comment |
up vote
0
down vote
favorite
I am readinf Ahlfors and came across the fact that:
$int_{-infty}^infty R(x) dx$, where $R(x)$ is a rational function, converges if and only if in the rational function $R(x)$ the degree of the denominator is at least two units higher than the degree of the numerator.
I am unsure of how to prove this fact rigorously. I do get that the condition on the degrees means roughly that $R(x)$ is approximately $frac cx$ (whose integral diverges) with $c$ a constant, but could anyone post a rigorus proof of this?
real-analysis complex-analysis rational-functions
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
Nov 19 at 9:44
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
Nov 19 at 9:45
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
Nov 19 at 9:45
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I am readinf Ahlfors and came across the fact that:
$int_{-infty}^infty R(x) dx$, where $R(x)$ is a rational function, converges if and only if in the rational function $R(x)$ the degree of the denominator is at least two units higher than the degree of the numerator.
I am unsure of how to prove this fact rigorously. I do get that the condition on the degrees means roughly that $R(x)$ is approximately $frac cx$ (whose integral diverges) with $c$ a constant, but could anyone post a rigorus proof of this?
real-analysis complex-analysis rational-functions
I am readinf Ahlfors and came across the fact that:
$int_{-infty}^infty R(x) dx$, where $R(x)$ is a rational function, converges if and only if in the rational function $R(x)$ the degree of the denominator is at least two units higher than the degree of the numerator.
I am unsure of how to prove this fact rigorously. I do get that the condition on the degrees means roughly that $R(x)$ is approximately $frac cx$ (whose integral diverges) with $c$ a constant, but could anyone post a rigorus proof of this?
real-analysis complex-analysis rational-functions
real-analysis complex-analysis rational-functions
edited Nov 19 at 9:49
asked Nov 19 at 9:38
Cute Brownie
978316
978316
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
Nov 19 at 9:44
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
Nov 19 at 9:45
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
Nov 19 at 9:45
add a comment |
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
Nov 19 at 9:44
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
Nov 19 at 9:45
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
Nov 19 at 9:45
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
Nov 19 at 9:44
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
Nov 19 at 9:44
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
Nov 19 at 9:45
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
Nov 19 at 9:45
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
Nov 19 at 9:45
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
Nov 19 at 9:45
add a comment |
1 Answer
1
active
oldest
votes
up vote
3
down vote
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
add a comment |
up vote
3
down vote
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
add a comment |
up vote
3
down vote
up vote
3
down vote
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
You need an extra assumption on zeros of the denominator. For example $frac 1 {x^{2}}$ is not integrable. Let $p$ and $q$ are polynomials and degree of $q$ is at least $2$ more than the degree of $p$ and let us assume that the denominator has no zeros on $mathbb R$. Then there is a constant $C$ such that $|frac p q |leq frac C {x^{2}}$ for $|x|$ sufficiently large and this makes $R=frac p q$ integrable.
answered Nov 19 at 9:45
Kavi Rama Murthy
42.7k31751
42.7k31751
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004704%2fwhy-does-int-infty-infty-rx-dx-converge-iff-the-rational-function-rx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You mean $int_1^infty$, right? It's basically because $int_1^xfrac{dx} x$ doesn't converge, yet $int_1^xfrac{dx} {x^2}$ does.
– Ennar
Nov 19 at 9:44
$int_{-infty}^inftyfrac1{x^2}dx$ doesn't converge, though. However, that's because of the pole in the middle, not because of the tails at $pminfty$.
– Arthur
Nov 19 at 9:45
@Ennar thanks, would you elaborate using epsilon-delta approximations and I'll select yours as an answer?
– Cute Brownie
Nov 19 at 9:45