In Young's double slit experiment, can there be an even number of maxima in the central envelope maximum?












3














In Young's double slit experiment, can we get an even number of maxima in the central envelope maximum? If so how and why the regular modelling of the double split interfaces is with an odd number like in the picture



enter image description here



Source of the pic: Hyperphysics










share|cite|improve this question





























    3














    In Young's double slit experiment, can we get an even number of maxima in the central envelope maximum? If so how and why the regular modelling of the double split interfaces is with an odd number like in the picture



    enter image description here



    Source of the pic: Hyperphysics










    share|cite|improve this question



























      3












      3








      3


      0





      In Young's double slit experiment, can we get an even number of maxima in the central envelope maximum? If so how and why the regular modelling of the double split interfaces is with an odd number like in the picture



      enter image description here



      Source of the pic: Hyperphysics










      share|cite|improve this question















      In Young's double slit experiment, can we get an even number of maxima in the central envelope maximum? If so how and why the regular modelling of the double split interfaces is with an odd number like in the picture



      enter image description here



      Source of the pic: Hyperphysics







      optics waves double-slit-experiment






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 28 '18 at 22:32









      knzhou

      42.1k11117201




      42.1k11117201










      asked Nov 28 '18 at 18:20









      Learnero

      232




      232






















          3 Answers
          3






          active

          oldest

          votes


















          5














          In order for two maximum interference fringes to appear, it is necessary to break the reflection symmetry between the two slits. If this symmetry remains unbroken, the phases associated with paths through the top and bottom slits always match, and the amplitudes interfere constructively as mentioned by Tausif Hossain. There are many ways to break this symmetry, most of which involve doing so at a classical level (this is the case, for example, in Pieter's answer pertaining to double slit interference of photons.)



          In the case of double slit interference of electrons, it is possible to break the symmetry in a way that is intrinsically quantum mechanical (preserving the reflection symmetry at a classical level) using the Aharonov Bohm effect. If you insert a thin magnetic flux through and perpendicular to the electron beam and tune it to just the right value, you should be able to obtain an even number of maxima. (Whether you can get more than two maxima is another story, and probably depends more sensitively on how the magnetic flux is distributed.)






          share|cite|improve this answer































            10














            One can get an even number of fringes by covering the pair of slits with a wedge of glass or plastic that gives half a wavelength more delay at one slit than at the other.






            share|cite|improve this answer





























              5














              Notice that if it is strictly a double slit experiment with a coherent light source then there will always be a central bright fringe where the path difference between the waves is zero(which is that, there is a point in the screen which is equidistant from the slits which lies on the perpendicular bisector of the slits). Hence the constructive interference at the center and the bright fringe.



              Thus, as long as that center fringe exists and also as there is symmetry ofcourse between the path differences on both sides of the central bright fringe. So the other bright fringes occur in pairs (like staring from 1 wavelength path difference from each side and so on).So, the number of fringes is always $1+2n$ (Where 1 is for the central bright fringe). Hence an odd number of bright fringes.






              share|cite|improve this answer





















              • I had doubts about it cause I read this question "In YDSE, what should be the width of each slit to obtain 20 maxima of the double slit pattern within the central maximum of the single slit pattern? (d=1mm)" The solution was like this Distance between the slits = d = 1 mm Path difference = a sinθ ≅ aθ = λ ⇒ θ = λ /a Width of central maximum of the single slit = 2 λ/a Width of the 20 maxima = 20 x fringe spacing = 20 x λ/d Width of central maximum of the single slit = Width of the 20 maxima of double slit 2 λ/a= 20 x λ/d a = d/10 = 0.1 mm So how is that possible?
                – Learnero
                Nov 28 '18 at 18:57










              • What I think the question meant is there are 20 Maxima apart from the central maxima. Hence you can say there are 10 Maxima on each side of the central fringe.
                – Tausif Hossain
                Nov 28 '18 at 19:00










              • You’re welcome. If you think the answer is satisfactory please accept it by clicking the “tick” icon.
                – Tausif Hossain
                Nov 28 '18 at 19:05






              • 3




                This ans. is correct for standard arrangement. You might find it interesting that you can also shift the fringe pattern by more than you shift the envelope, by putting a thin piece of glass over the slits, slightly thicker at one slit than the other. In this way even numbers are possible (and c.f. "blazed grating").
                – Andrew Steane
                Nov 28 '18 at 19:21











              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "151"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f443892%2fin-youngs-double-slit-experiment-can-there-be-an-even-number-of-maxima-in-the%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5














              In order for two maximum interference fringes to appear, it is necessary to break the reflection symmetry between the two slits. If this symmetry remains unbroken, the phases associated with paths through the top and bottom slits always match, and the amplitudes interfere constructively as mentioned by Tausif Hossain. There are many ways to break this symmetry, most of which involve doing so at a classical level (this is the case, for example, in Pieter's answer pertaining to double slit interference of photons.)



              In the case of double slit interference of electrons, it is possible to break the symmetry in a way that is intrinsically quantum mechanical (preserving the reflection symmetry at a classical level) using the Aharonov Bohm effect. If you insert a thin magnetic flux through and perpendicular to the electron beam and tune it to just the right value, you should be able to obtain an even number of maxima. (Whether you can get more than two maxima is another story, and probably depends more sensitively on how the magnetic flux is distributed.)






              share|cite|improve this answer




























                5














                In order for two maximum interference fringes to appear, it is necessary to break the reflection symmetry between the two slits. If this symmetry remains unbroken, the phases associated with paths through the top and bottom slits always match, and the amplitudes interfere constructively as mentioned by Tausif Hossain. There are many ways to break this symmetry, most of which involve doing so at a classical level (this is the case, for example, in Pieter's answer pertaining to double slit interference of photons.)



                In the case of double slit interference of electrons, it is possible to break the symmetry in a way that is intrinsically quantum mechanical (preserving the reflection symmetry at a classical level) using the Aharonov Bohm effect. If you insert a thin magnetic flux through and perpendicular to the electron beam and tune it to just the right value, you should be able to obtain an even number of maxima. (Whether you can get more than two maxima is another story, and probably depends more sensitively on how the magnetic flux is distributed.)






                share|cite|improve this answer


























                  5












                  5








                  5






                  In order for two maximum interference fringes to appear, it is necessary to break the reflection symmetry between the two slits. If this symmetry remains unbroken, the phases associated with paths through the top and bottom slits always match, and the amplitudes interfere constructively as mentioned by Tausif Hossain. There are many ways to break this symmetry, most of which involve doing so at a classical level (this is the case, for example, in Pieter's answer pertaining to double slit interference of photons.)



                  In the case of double slit interference of electrons, it is possible to break the symmetry in a way that is intrinsically quantum mechanical (preserving the reflection symmetry at a classical level) using the Aharonov Bohm effect. If you insert a thin magnetic flux through and perpendicular to the electron beam and tune it to just the right value, you should be able to obtain an even number of maxima. (Whether you can get more than two maxima is another story, and probably depends more sensitively on how the magnetic flux is distributed.)






                  share|cite|improve this answer














                  In order for two maximum interference fringes to appear, it is necessary to break the reflection symmetry between the two slits. If this symmetry remains unbroken, the phases associated with paths through the top and bottom slits always match, and the amplitudes interfere constructively as mentioned by Tausif Hossain. There are many ways to break this symmetry, most of which involve doing so at a classical level (this is the case, for example, in Pieter's answer pertaining to double slit interference of photons.)



                  In the case of double slit interference of electrons, it is possible to break the symmetry in a way that is intrinsically quantum mechanical (preserving the reflection symmetry at a classical level) using the Aharonov Bohm effect. If you insert a thin magnetic flux through and perpendicular to the electron beam and tune it to just the right value, you should be able to obtain an even number of maxima. (Whether you can get more than two maxima is another story, and probably depends more sensitively on how the magnetic flux is distributed.)







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 28 '18 at 20:05

























                  answered Nov 28 '18 at 19:57









                  fs137

                  2,470816




                  2,470816























                      10














                      One can get an even number of fringes by covering the pair of slits with a wedge of glass or plastic that gives half a wavelength more delay at one slit than at the other.






                      share|cite|improve this answer


























                        10














                        One can get an even number of fringes by covering the pair of slits with a wedge of glass or plastic that gives half a wavelength more delay at one slit than at the other.






                        share|cite|improve this answer
























                          10












                          10








                          10






                          One can get an even number of fringes by covering the pair of slits with a wedge of glass or plastic that gives half a wavelength more delay at one slit than at the other.






                          share|cite|improve this answer












                          One can get an even number of fringes by covering the pair of slits with a wedge of glass or plastic that gives half a wavelength more delay at one slit than at the other.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 28 '18 at 19:41









                          Pieter

                          7,63731431




                          7,63731431























                              5














                              Notice that if it is strictly a double slit experiment with a coherent light source then there will always be a central bright fringe where the path difference between the waves is zero(which is that, there is a point in the screen which is equidistant from the slits which lies on the perpendicular bisector of the slits). Hence the constructive interference at the center and the bright fringe.



                              Thus, as long as that center fringe exists and also as there is symmetry ofcourse between the path differences on both sides of the central bright fringe. So the other bright fringes occur in pairs (like staring from 1 wavelength path difference from each side and so on).So, the number of fringes is always $1+2n$ (Where 1 is for the central bright fringe). Hence an odd number of bright fringes.






                              share|cite|improve this answer





















                              • I had doubts about it cause I read this question "In YDSE, what should be the width of each slit to obtain 20 maxima of the double slit pattern within the central maximum of the single slit pattern? (d=1mm)" The solution was like this Distance between the slits = d = 1 mm Path difference = a sinθ ≅ aθ = λ ⇒ θ = λ /a Width of central maximum of the single slit = 2 λ/a Width of the 20 maxima = 20 x fringe spacing = 20 x λ/d Width of central maximum of the single slit = Width of the 20 maxima of double slit 2 λ/a= 20 x λ/d a = d/10 = 0.1 mm So how is that possible?
                                – Learnero
                                Nov 28 '18 at 18:57










                              • What I think the question meant is there are 20 Maxima apart from the central maxima. Hence you can say there are 10 Maxima on each side of the central fringe.
                                – Tausif Hossain
                                Nov 28 '18 at 19:00










                              • You’re welcome. If you think the answer is satisfactory please accept it by clicking the “tick” icon.
                                – Tausif Hossain
                                Nov 28 '18 at 19:05






                              • 3




                                This ans. is correct for standard arrangement. You might find it interesting that you can also shift the fringe pattern by more than you shift the envelope, by putting a thin piece of glass over the slits, slightly thicker at one slit than the other. In this way even numbers are possible (and c.f. "blazed grating").
                                – Andrew Steane
                                Nov 28 '18 at 19:21
















                              5














                              Notice that if it is strictly a double slit experiment with a coherent light source then there will always be a central bright fringe where the path difference between the waves is zero(which is that, there is a point in the screen which is equidistant from the slits which lies on the perpendicular bisector of the slits). Hence the constructive interference at the center and the bright fringe.



                              Thus, as long as that center fringe exists and also as there is symmetry ofcourse between the path differences on both sides of the central bright fringe. So the other bright fringes occur in pairs (like staring from 1 wavelength path difference from each side and so on).So, the number of fringes is always $1+2n$ (Where 1 is for the central bright fringe). Hence an odd number of bright fringes.






                              share|cite|improve this answer





















                              • I had doubts about it cause I read this question "In YDSE, what should be the width of each slit to obtain 20 maxima of the double slit pattern within the central maximum of the single slit pattern? (d=1mm)" The solution was like this Distance between the slits = d = 1 mm Path difference = a sinθ ≅ aθ = λ ⇒ θ = λ /a Width of central maximum of the single slit = 2 λ/a Width of the 20 maxima = 20 x fringe spacing = 20 x λ/d Width of central maximum of the single slit = Width of the 20 maxima of double slit 2 λ/a= 20 x λ/d a = d/10 = 0.1 mm So how is that possible?
                                – Learnero
                                Nov 28 '18 at 18:57










                              • What I think the question meant is there are 20 Maxima apart from the central maxima. Hence you can say there are 10 Maxima on each side of the central fringe.
                                – Tausif Hossain
                                Nov 28 '18 at 19:00










                              • You’re welcome. If you think the answer is satisfactory please accept it by clicking the “tick” icon.
                                – Tausif Hossain
                                Nov 28 '18 at 19:05






                              • 3




                                This ans. is correct for standard arrangement. You might find it interesting that you can also shift the fringe pattern by more than you shift the envelope, by putting a thin piece of glass over the slits, slightly thicker at one slit than the other. In this way even numbers are possible (and c.f. "blazed grating").
                                – Andrew Steane
                                Nov 28 '18 at 19:21














                              5












                              5








                              5






                              Notice that if it is strictly a double slit experiment with a coherent light source then there will always be a central bright fringe where the path difference between the waves is zero(which is that, there is a point in the screen which is equidistant from the slits which lies on the perpendicular bisector of the slits). Hence the constructive interference at the center and the bright fringe.



                              Thus, as long as that center fringe exists and also as there is symmetry ofcourse between the path differences on both sides of the central bright fringe. So the other bright fringes occur in pairs (like staring from 1 wavelength path difference from each side and so on).So, the number of fringes is always $1+2n$ (Where 1 is for the central bright fringe). Hence an odd number of bright fringes.






                              share|cite|improve this answer












                              Notice that if it is strictly a double slit experiment with a coherent light source then there will always be a central bright fringe where the path difference between the waves is zero(which is that, there is a point in the screen which is equidistant from the slits which lies on the perpendicular bisector of the slits). Hence the constructive interference at the center and the bright fringe.



                              Thus, as long as that center fringe exists and also as there is symmetry ofcourse between the path differences on both sides of the central bright fringe. So the other bright fringes occur in pairs (like staring from 1 wavelength path difference from each side and so on).So, the number of fringes is always $1+2n$ (Where 1 is for the central bright fringe). Hence an odd number of bright fringes.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Nov 28 '18 at 18:44









                              Tausif Hossain

                              2,6262618




                              2,6262618












                              • I had doubts about it cause I read this question "In YDSE, what should be the width of each slit to obtain 20 maxima of the double slit pattern within the central maximum of the single slit pattern? (d=1mm)" The solution was like this Distance between the slits = d = 1 mm Path difference = a sinθ ≅ aθ = λ ⇒ θ = λ /a Width of central maximum of the single slit = 2 λ/a Width of the 20 maxima = 20 x fringe spacing = 20 x λ/d Width of central maximum of the single slit = Width of the 20 maxima of double slit 2 λ/a= 20 x λ/d a = d/10 = 0.1 mm So how is that possible?
                                – Learnero
                                Nov 28 '18 at 18:57










                              • What I think the question meant is there are 20 Maxima apart from the central maxima. Hence you can say there are 10 Maxima on each side of the central fringe.
                                – Tausif Hossain
                                Nov 28 '18 at 19:00










                              • You’re welcome. If you think the answer is satisfactory please accept it by clicking the “tick” icon.
                                – Tausif Hossain
                                Nov 28 '18 at 19:05






                              • 3




                                This ans. is correct for standard arrangement. You might find it interesting that you can also shift the fringe pattern by more than you shift the envelope, by putting a thin piece of glass over the slits, slightly thicker at one slit than the other. In this way even numbers are possible (and c.f. "blazed grating").
                                – Andrew Steane
                                Nov 28 '18 at 19:21


















                              • I had doubts about it cause I read this question "In YDSE, what should be the width of each slit to obtain 20 maxima of the double slit pattern within the central maximum of the single slit pattern? (d=1mm)" The solution was like this Distance between the slits = d = 1 mm Path difference = a sinθ ≅ aθ = λ ⇒ θ = λ /a Width of central maximum of the single slit = 2 λ/a Width of the 20 maxima = 20 x fringe spacing = 20 x λ/d Width of central maximum of the single slit = Width of the 20 maxima of double slit 2 λ/a= 20 x λ/d a = d/10 = 0.1 mm So how is that possible?
                                – Learnero
                                Nov 28 '18 at 18:57










                              • What I think the question meant is there are 20 Maxima apart from the central maxima. Hence you can say there are 10 Maxima on each side of the central fringe.
                                – Tausif Hossain
                                Nov 28 '18 at 19:00










                              • You’re welcome. If you think the answer is satisfactory please accept it by clicking the “tick” icon.
                                – Tausif Hossain
                                Nov 28 '18 at 19:05






                              • 3




                                This ans. is correct for standard arrangement. You might find it interesting that you can also shift the fringe pattern by more than you shift the envelope, by putting a thin piece of glass over the slits, slightly thicker at one slit than the other. In this way even numbers are possible (and c.f. "blazed grating").
                                – Andrew Steane
                                Nov 28 '18 at 19:21
















                              I had doubts about it cause I read this question "In YDSE, what should be the width of each slit to obtain 20 maxima of the double slit pattern within the central maximum of the single slit pattern? (d=1mm)" The solution was like this Distance between the slits = d = 1 mm Path difference = a sinθ ≅ aθ = λ ⇒ θ = λ /a Width of central maximum of the single slit = 2 λ/a Width of the 20 maxima = 20 x fringe spacing = 20 x λ/d Width of central maximum of the single slit = Width of the 20 maxima of double slit 2 λ/a= 20 x λ/d a = d/10 = 0.1 mm So how is that possible?
                              – Learnero
                              Nov 28 '18 at 18:57




                              I had doubts about it cause I read this question "In YDSE, what should be the width of each slit to obtain 20 maxima of the double slit pattern within the central maximum of the single slit pattern? (d=1mm)" The solution was like this Distance between the slits = d = 1 mm Path difference = a sinθ ≅ aθ = λ ⇒ θ = λ /a Width of central maximum of the single slit = 2 λ/a Width of the 20 maxima = 20 x fringe spacing = 20 x λ/d Width of central maximum of the single slit = Width of the 20 maxima of double slit 2 λ/a= 20 x λ/d a = d/10 = 0.1 mm So how is that possible?
                              – Learnero
                              Nov 28 '18 at 18:57












                              What I think the question meant is there are 20 Maxima apart from the central maxima. Hence you can say there are 10 Maxima on each side of the central fringe.
                              – Tausif Hossain
                              Nov 28 '18 at 19:00




                              What I think the question meant is there are 20 Maxima apart from the central maxima. Hence you can say there are 10 Maxima on each side of the central fringe.
                              – Tausif Hossain
                              Nov 28 '18 at 19:00












                              You’re welcome. If you think the answer is satisfactory please accept it by clicking the “tick” icon.
                              – Tausif Hossain
                              Nov 28 '18 at 19:05




                              You’re welcome. If you think the answer is satisfactory please accept it by clicking the “tick” icon.
                              – Tausif Hossain
                              Nov 28 '18 at 19:05




                              3




                              3




                              This ans. is correct for standard arrangement. You might find it interesting that you can also shift the fringe pattern by more than you shift the envelope, by putting a thin piece of glass over the slits, slightly thicker at one slit than the other. In this way even numbers are possible (and c.f. "blazed grating").
                              – Andrew Steane
                              Nov 28 '18 at 19:21




                              This ans. is correct for standard arrangement. You might find it interesting that you can also shift the fringe pattern by more than you shift the envelope, by putting a thin piece of glass over the slits, slightly thicker at one slit than the other. In this way even numbers are possible (and c.f. "blazed grating").
                              – Andrew Steane
                              Nov 28 '18 at 19:21


















                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Physics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f443892%2fin-youngs-double-slit-experiment-can-there-be-an-even-number-of-maxima-in-the%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bundesstraße 106

                              Verónica Boquete

                              Ida-Boy-Ed-Garten