What is the inverse of X modulo $1 + X + X^2 + X^3 + X^4$? [duplicate]
$begingroup$
This question already has an answer here:
Let $theta$ be a root of $p(x)=x^3+9x+6$, find the inverse of $1+theta$ in $mathbb{Q(theta)}$
2 answers
What is the inverse of X modulo $1 + X + X^2 + X^3 + X^4$?
Is there any open softwares to calculate such things easily?
ring-theory inverse irreducible-polynomials
$endgroup$
                    marked as duplicate by Saad, GNUSupporter 8964民主女神 地下教會, jgon, Bill Dubuque
    StackExchange.ready(function() {
        if (StackExchange.options.isMobile) return;
        $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
            var $hover = $(this).addClass('hover-bound'),
                $msg = $hover.siblings('.dupe-hammer-message');
            
            $hover.hover(
                function() {
                    $hover.showInfoMessage('', {
                        messageElement: $msg.clone().show(),
                        transient: false,
                        position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
                        dismissable: false,
                        relativeToBody: true
                    });
                },
                function() {
                    StackExchange.helpers.removeMessages();
                }
            );
        });
    });
 Dec 4 '18 at 15:25
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Let $theta$ be a root of $p(x)=x^3+9x+6$, find the inverse of $1+theta$ in $mathbb{Q(theta)}$
2 answers
What is the inverse of X modulo $1 + X + X^2 + X^3 + X^4$?
Is there any open softwares to calculate such things easily?
ring-theory inverse irreducible-polynomials
$endgroup$
                    marked as duplicate by Saad, GNUSupporter 8964民主女神 地下教會, jgon, Bill Dubuque
    StackExchange.ready(function() {
        if (StackExchange.options.isMobile) return;
        $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
            var $hover = $(this).addClass('hover-bound'),
                $msg = $hover.siblings('.dupe-hammer-message');
            
            $hover.hover(
                function() {
                    $hover.showInfoMessage('', {
                        messageElement: $msg.clone().show(),
                        transient: false,
                        position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
                        dismissable: false,
                        relativeToBody: true
                    });
                },
                function() {
                    StackExchange.helpers.removeMessages();
                }
            );
        });
    });
 Dec 4 '18 at 15:25
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
Hint $bmod, 1+xf!:, (-f)xequiv 1 $
$endgroup$
– Bill Dubuque
Dec 4 '18 at 14:40
add a comment |
$begingroup$
This question already has an answer here:
Let $theta$ be a root of $p(x)=x^3+9x+6$, find the inverse of $1+theta$ in $mathbb{Q(theta)}$
2 answers
What is the inverse of X modulo $1 + X + X^2 + X^3 + X^4$?
Is there any open softwares to calculate such things easily?
ring-theory inverse irreducible-polynomials
$endgroup$
This question already has an answer here:
Let $theta$ be a root of $p(x)=x^3+9x+6$, find the inverse of $1+theta$ in $mathbb{Q(theta)}$
2 answers
What is the inverse of X modulo $1 + X + X^2 + X^3 + X^4$?
Is there any open softwares to calculate such things easily?
This question already has an answer here:
Let $theta$ be a root of $p(x)=x^3+9x+6$, find the inverse of $1+theta$ in $mathbb{Q(theta)}$
2 answers
ring-theory inverse irreducible-polynomials
ring-theory inverse irreducible-polynomials
edited Dec 4 '18 at 9:26
José Carlos Santos
157k22126227
157k22126227
asked Dec 4 '18 at 9:23
malleamallea
29919
29919
                    marked as duplicate by Saad, GNUSupporter 8964民主女神 地下教會, jgon, Bill Dubuque
    StackExchange.ready(function() {
        if (StackExchange.options.isMobile) return;
        $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
            var $hover = $(this).addClass('hover-bound'),
                $msg = $hover.siblings('.dupe-hammer-message');
            
            $hover.hover(
                function() {
                    $hover.showInfoMessage('', {
                        messageElement: $msg.clone().show(),
                        transient: false,
                        position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
                        dismissable: false,
                        relativeToBody: true
                    });
                },
                function() {
                    StackExchange.helpers.removeMessages();
                }
            );
        });
    });
 Dec 4 '18 at 15:25
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
                    marked as duplicate by Saad, GNUSupporter 8964民主女神 地下教會, jgon, Bill Dubuque
    StackExchange.ready(function() {
        if (StackExchange.options.isMobile) return;
        $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
            var $hover = $(this).addClass('hover-bound'),
                $msg = $hover.siblings('.dupe-hammer-message');
            
            $hover.hover(
                function() {
                    $hover.showInfoMessage('', {
                        messageElement: $msg.clone().show(),
                        transient: false,
                        position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
                        dismissable: false,
                        relativeToBody: true
                    });
                },
                function() {
                    StackExchange.helpers.removeMessages();
                }
            );
        });
    });
 Dec 4 '18 at 15:25
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
Hint $bmod, 1+xf!:, (-f)xequiv 1 $
$endgroup$
– Bill Dubuque
Dec 4 '18 at 14:40
add a comment |
1
$begingroup$
Hint $bmod, 1+xf!:, (-f)xequiv 1 $
$endgroup$
– Bill Dubuque
Dec 4 '18 at 14:40
1
1
$begingroup$
Hint $bmod, 1+xf!:, (-f)xequiv 1 $
$endgroup$
– Bill Dubuque
Dec 4 '18 at 14:40
$begingroup$
Hint $bmod, 1+xf!:, (-f)xequiv 1 $
$endgroup$
– Bill Dubuque
Dec 4 '18 at 14:40
add a comment |
                                1 Answer
                            1
                        
active
oldest
votes
$begingroup$
Hint: $1+X+X^2+X^3+X^4=1+X(1+X+X^2+X^3)$.
$endgroup$
$begingroup$
Got it! Thank you very much :)
$endgroup$
– mallea
Dec 4 '18 at 13:33
add a comment |
                                1 Answer
                            1
                        
active
oldest
votes
                                1 Answer
                            1
                        
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: $1+X+X^2+X^3+X^4=1+X(1+X+X^2+X^3)$.
$endgroup$
$begingroup$
Got it! Thank you very much :)
$endgroup$
– mallea
Dec 4 '18 at 13:33
add a comment |
$begingroup$
Hint: $1+X+X^2+X^3+X^4=1+X(1+X+X^2+X^3)$.
$endgroup$
$begingroup$
Got it! Thank you very much :)
$endgroup$
– mallea
Dec 4 '18 at 13:33
add a comment |
$begingroup$
Hint: $1+X+X^2+X^3+X^4=1+X(1+X+X^2+X^3)$.
$endgroup$
Hint: $1+X+X^2+X^3+X^4=1+X(1+X+X^2+X^3)$.
answered Dec 4 '18 at 9:25
José Carlos SantosJosé Carlos Santos
157k22126227
157k22126227
$begingroup$
Got it! Thank you very much :)
$endgroup$
– mallea
Dec 4 '18 at 13:33
add a comment |
$begingroup$
Got it! Thank you very much :)
$endgroup$
– mallea
Dec 4 '18 at 13:33
$begingroup$
Got it! Thank you very much :)
$endgroup$
– mallea
Dec 4 '18 at 13:33
$begingroup$
Got it! Thank you very much :)
$endgroup$
– mallea
Dec 4 '18 at 13:33
add a comment |
1
$begingroup$
Hint $bmod, 1+xf!:, (-f)xequiv 1 $
$endgroup$
– Bill Dubuque
Dec 4 '18 at 14:40