Prove: $(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $












0












$begingroup$


I'd really like your help proving:



$(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $



Where $HPC$ is the Hilbert's system proof which contains the following relevant axioms:




  1. $Arightarrow(B rightarrow A)$

  2. $(Arightarrow(Brightarrow C)) to ((Arightarrow B)rightarrow(Arightarrow C))$

  3. $(Arightarrow B)rightarrow ((Arightarrowbar{B})rightarrow bar{A})$

  4. $bar{bar{A}} rightarrow A$


In addition tried to use these following lemmas: $bar{A} rightarrow (A rightarrow C) $ and $(Arightarrow B)rightarrow (bar{B} rightarrow bar{A})$.



Any suggestions?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I'd really like your help proving:



    $(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $



    Where $HPC$ is the Hilbert's system proof which contains the following relevant axioms:




    1. $Arightarrow(B rightarrow A)$

    2. $(Arightarrow(Brightarrow C)) to ((Arightarrow B)rightarrow(Arightarrow C))$

    3. $(Arightarrow B)rightarrow ((Arightarrowbar{B})rightarrow bar{A})$

    4. $bar{bar{A}} rightarrow A$


    In addition tried to use these following lemmas: $bar{A} rightarrow (A rightarrow C) $ and $(Arightarrow B)rightarrow (bar{B} rightarrow bar{A})$.



    Any suggestions?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I'd really like your help proving:



      $(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $



      Where $HPC$ is the Hilbert's system proof which contains the following relevant axioms:




      1. $Arightarrow(B rightarrow A)$

      2. $(Arightarrow(Brightarrow C)) to ((Arightarrow B)rightarrow(Arightarrow C))$

      3. $(Arightarrow B)rightarrow ((Arightarrowbar{B})rightarrow bar{A})$

      4. $bar{bar{A}} rightarrow A$


      In addition tried to use these following lemmas: $bar{A} rightarrow (A rightarrow C) $ and $(Arightarrow B)rightarrow (bar{B} rightarrow bar{A})$.



      Any suggestions?










      share|cite|improve this question











      $endgroup$




      I'd really like your help proving:



      $(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $



      Where $HPC$ is the Hilbert's system proof which contains the following relevant axioms:




      1. $Arightarrow(B rightarrow A)$

      2. $(Arightarrow(Brightarrow C)) to ((Arightarrow B)rightarrow(Arightarrow C))$

      3. $(Arightarrow B)rightarrow ((Arightarrowbar{B})rightarrow bar{A})$

      4. $bar{bar{A}} rightarrow A$


      In addition tried to use these following lemmas: $bar{A} rightarrow (A rightarrow C) $ and $(Arightarrow B)rightarrow (bar{B} rightarrow bar{A})$.



      Any suggestions?







      logic propositional-calculus proof-theory hilbert-calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jul 29 '18 at 12:25









      Taroccoesbrocco

      5,35371839




      5,35371839










      asked Mar 21 '13 at 17:14









      JozefJozef

      2,84132564




      2,84132564






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$


          1. $A→B$ (premise)

          2. $(A→C)→B$ (premise)

          3. $(A→B)→(neg B→neg A)$ (your second lemma)

          4. $neg B→ neg A$ (3,1)

          5. $neg A →(A→C)$ (your first lemma)

          6. $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)

          7. $neg B → (neg A →(A→C))$ (6,5)

          8. $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)

          9. $((neg B → neg A)→(neg B → (A→C)))$ (8,7)

          10. $neg B → (A→C)$ (9,4)

          11. $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)

          12. $neg B → neg(A→C)$ (11, 2)

          13. $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)

          14. $(neg B → neg(A→C))→neg neg B$ (13, 10)

          15. $neg neg B$ (14, 12)

          16. $neg neg B → B$ (axiom 4)

          17. $B$ (16, 15)






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f337065%2fprove-a-rightarrow-b-a-rightarrow-c-rightarrow-b-mapsto-hpc-b%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$


            1. $A→B$ (premise)

            2. $(A→C)→B$ (premise)

            3. $(A→B)→(neg B→neg A)$ (your second lemma)

            4. $neg B→ neg A$ (3,1)

            5. $neg A →(A→C)$ (your first lemma)

            6. $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)

            7. $neg B → (neg A →(A→C))$ (6,5)

            8. $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)

            9. $((neg B → neg A)→(neg B → (A→C)))$ (8,7)

            10. $neg B → (A→C)$ (9,4)

            11. $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)

            12. $neg B → neg(A→C)$ (11, 2)

            13. $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)

            14. $(neg B → neg(A→C))→neg neg B$ (13, 10)

            15. $neg neg B$ (14, 12)

            16. $neg neg B → B$ (axiom 4)

            17. $B$ (16, 15)






            share|cite|improve this answer









            $endgroup$


















              4












              $begingroup$


              1. $A→B$ (premise)

              2. $(A→C)→B$ (premise)

              3. $(A→B)→(neg B→neg A)$ (your second lemma)

              4. $neg B→ neg A$ (3,1)

              5. $neg A →(A→C)$ (your first lemma)

              6. $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)

              7. $neg B → (neg A →(A→C))$ (6,5)

              8. $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)

              9. $((neg B → neg A)→(neg B → (A→C)))$ (8,7)

              10. $neg B → (A→C)$ (9,4)

              11. $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)

              12. $neg B → neg(A→C)$ (11, 2)

              13. $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)

              14. $(neg B → neg(A→C))→neg neg B$ (13, 10)

              15. $neg neg B$ (14, 12)

              16. $neg neg B → B$ (axiom 4)

              17. $B$ (16, 15)






              share|cite|improve this answer









              $endgroup$
















                4












                4








                4





                $begingroup$


                1. $A→B$ (premise)

                2. $(A→C)→B$ (premise)

                3. $(A→B)→(neg B→neg A)$ (your second lemma)

                4. $neg B→ neg A$ (3,1)

                5. $neg A →(A→C)$ (your first lemma)

                6. $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)

                7. $neg B → (neg A →(A→C))$ (6,5)

                8. $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)

                9. $((neg B → neg A)→(neg B → (A→C)))$ (8,7)

                10. $neg B → (A→C)$ (9,4)

                11. $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)

                12. $neg B → neg(A→C)$ (11, 2)

                13. $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)

                14. $(neg B → neg(A→C))→neg neg B$ (13, 10)

                15. $neg neg B$ (14, 12)

                16. $neg neg B → B$ (axiom 4)

                17. $B$ (16, 15)






                share|cite|improve this answer









                $endgroup$




                1. $A→B$ (premise)

                2. $(A→C)→B$ (premise)

                3. $(A→B)→(neg B→neg A)$ (your second lemma)

                4. $neg B→ neg A$ (3,1)

                5. $neg A →(A→C)$ (your first lemma)

                6. $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)

                7. $neg B → (neg A →(A→C))$ (6,5)

                8. $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)

                9. $((neg B → neg A)→(neg B → (A→C)))$ (8,7)

                10. $neg B → (A→C)$ (9,4)

                11. $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)

                12. $neg B → neg(A→C)$ (11, 2)

                13. $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)

                14. $(neg B → neg(A→C))→neg neg B$ (13, 10)

                15. $neg neg B$ (14, 12)

                16. $neg neg B → B$ (axiom 4)

                17. $B$ (16, 15)







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 23 '13 at 17:04









                CianCian

                411215




                411215






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f337065%2fprove-a-rightarrow-b-a-rightarrow-c-rightarrow-b-mapsto-hpc-b%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten