Proving $binom{n+1+m}{n+1}=sum_{k=0}^m(k+1)binom{n+m-k}{n}$
$begingroup$
Use any method to prove that
$$binom{n+1+m}{n+1}=sum_{k=0}^m(k+1)binom{n+m-k}{n}$$
My Try:
Base case: Let $m=1$
LHS$$binom{n+1+m}{n+1}=binom{n+2}{n+1}=(n+2)$$
RHS$$sum_{k=0}^m(k+1)binom{n+m-k}{n}=binom{n+1-0}{n}+(1+1)binom{n+1-1}{n}$$
$$=frac{(n+1)!}{n!}+2$$
$$=(n+3)$$
If $m=2$
LHS$$binom{n+3}{n+1}=frac{n^2+5n+6}{2!}$$
RHS$$=binom{n+2}{n}+2binom{n+1}{n}+3binom{n}{n}$$
$$=frac{n^2+3n+2+4n+4+6}{2}=frac{n^2+7n+12}{2}$$
Clearly $LHSne RHS$
If LHS and RHS are not equal then how to prove this proof? Can anyone explain how to prove this.
combinatorics discrete-mathematics induction combinatorial-proofs
$endgroup$
add a comment |
$begingroup$
Use any method to prove that
$$binom{n+1+m}{n+1}=sum_{k=0}^m(k+1)binom{n+m-k}{n}$$
My Try:
Base case: Let $m=1$
LHS$$binom{n+1+m}{n+1}=binom{n+2}{n+1}=(n+2)$$
RHS$$sum_{k=0}^m(k+1)binom{n+m-k}{n}=binom{n+1-0}{n}+(1+1)binom{n+1-1}{n}$$
$$=frac{(n+1)!}{n!}+2$$
$$=(n+3)$$
If $m=2$
LHS$$binom{n+3}{n+1}=frac{n^2+5n+6}{2!}$$
RHS$$=binom{n+2}{n}+2binom{n+1}{n}+3binom{n}{n}$$
$$=frac{n^2+3n+2+4n+4+6}{2}=frac{n^2+7n+12}{2}$$
Clearly $LHSne RHS$
If LHS and RHS are not equal then how to prove this proof? Can anyone explain how to prove this.
combinatorics discrete-mathematics induction combinatorial-proofs
$endgroup$
4
$begingroup$
If something is not true, you cannot prove that it is true.
$endgroup$
– Batominovski
Dec 8 '18 at 16:46
$begingroup$
@Batominovski If it is wrong, then why am I asked to prove the equation.
$endgroup$
– user982787
Dec 8 '18 at 17:23
1
$begingroup$
Mistakes happen. I hope you understand that humans are not perfect, regardless of their intelligence and experiences.
$endgroup$
– Batominovski
Dec 8 '18 at 17:26
add a comment |
$begingroup$
Use any method to prove that
$$binom{n+1+m}{n+1}=sum_{k=0}^m(k+1)binom{n+m-k}{n}$$
My Try:
Base case: Let $m=1$
LHS$$binom{n+1+m}{n+1}=binom{n+2}{n+1}=(n+2)$$
RHS$$sum_{k=0}^m(k+1)binom{n+m-k}{n}=binom{n+1-0}{n}+(1+1)binom{n+1-1}{n}$$
$$=frac{(n+1)!}{n!}+2$$
$$=(n+3)$$
If $m=2$
LHS$$binom{n+3}{n+1}=frac{n^2+5n+6}{2!}$$
RHS$$=binom{n+2}{n}+2binom{n+1}{n}+3binom{n}{n}$$
$$=frac{n^2+3n+2+4n+4+6}{2}=frac{n^2+7n+12}{2}$$
Clearly $LHSne RHS$
If LHS and RHS are not equal then how to prove this proof? Can anyone explain how to prove this.
combinatorics discrete-mathematics induction combinatorial-proofs
$endgroup$
Use any method to prove that
$$binom{n+1+m}{n+1}=sum_{k=0}^m(k+1)binom{n+m-k}{n}$$
My Try:
Base case: Let $m=1$
LHS$$binom{n+1+m}{n+1}=binom{n+2}{n+1}=(n+2)$$
RHS$$sum_{k=0}^m(k+1)binom{n+m-k}{n}=binom{n+1-0}{n}+(1+1)binom{n+1-1}{n}$$
$$=frac{(n+1)!}{n!}+2$$
$$=(n+3)$$
If $m=2$
LHS$$binom{n+3}{n+1}=frac{n^2+5n+6}{2!}$$
RHS$$=binom{n+2}{n}+2binom{n+1}{n}+3binom{n}{n}$$
$$=frac{n^2+3n+2+4n+4+6}{2}=frac{n^2+7n+12}{2}$$
Clearly $LHSne RHS$
If LHS and RHS are not equal then how to prove this proof? Can anyone explain how to prove this.
combinatorics discrete-mathematics induction combinatorial-proofs
combinatorics discrete-mathematics induction combinatorial-proofs
asked Dec 8 '18 at 16:37
user982787user982787
1117
1117
4
$begingroup$
If something is not true, you cannot prove that it is true.
$endgroup$
– Batominovski
Dec 8 '18 at 16:46
$begingroup$
@Batominovski If it is wrong, then why am I asked to prove the equation.
$endgroup$
– user982787
Dec 8 '18 at 17:23
1
$begingroup$
Mistakes happen. I hope you understand that humans are not perfect, regardless of their intelligence and experiences.
$endgroup$
– Batominovski
Dec 8 '18 at 17:26
add a comment |
4
$begingroup$
If something is not true, you cannot prove that it is true.
$endgroup$
– Batominovski
Dec 8 '18 at 16:46
$begingroup$
@Batominovski If it is wrong, then why am I asked to prove the equation.
$endgroup$
– user982787
Dec 8 '18 at 17:23
1
$begingroup$
Mistakes happen. I hope you understand that humans are not perfect, regardless of their intelligence and experiences.
$endgroup$
– Batominovski
Dec 8 '18 at 17:26
4
4
$begingroup$
If something is not true, you cannot prove that it is true.
$endgroup$
– Batominovski
Dec 8 '18 at 16:46
$begingroup$
If something is not true, you cannot prove that it is true.
$endgroup$
– Batominovski
Dec 8 '18 at 16:46
$begingroup$
@Batominovski If it is wrong, then why am I asked to prove the equation.
$endgroup$
– user982787
Dec 8 '18 at 17:23
$begingroup$
@Batominovski If it is wrong, then why am I asked to prove the equation.
$endgroup$
– user982787
Dec 8 '18 at 17:23
1
1
$begingroup$
Mistakes happen. I hope you understand that humans are not perfect, regardless of their intelligence and experiences.
$endgroup$
– Batominovski
Dec 8 '18 at 17:26
$begingroup$
Mistakes happen. I hope you understand that humans are not perfect, regardless of their intelligence and experiences.
$endgroup$
– Batominovski
Dec 8 '18 at 17:26
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{require{cancel}bcancel{cancel{n + 1 + m choose n + 1}} =
sum_{k = 0}^{m}pars{k + 1}{n + m - k choose n}: {LARGE ?}}$.
The right answer is
$bbx{ds{n + m + 2 choose n + 2}}$
$$
bbx{mbox{Note that} {n + m - k choose n} = 0
mbox{when} k > m}
$$
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{m}pars{k + 1}
{n + m - k choose n}} =
sum_{k = 0}^{infty}pars{k + 1}{n + m - k choose m - k}
\[5mm] = &
sum_{k = 0}^{infty}pars{k + 1}
bracks{{-n - 1 choose m - k}pars{-1}^{m - k}}
\[5mm] = &
pars{-1}^{m}sum_{k = 0}^{infty}pars{k + 1}pars{-1}^{k}
bracks{z^{m - k}}pars{1 + z}^{-n - 1}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1}
sum_{k = 0}^{infty}pars{k + 1}pars{-z}^{k}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
pars{-,partiald{}{z}sum_{k = 0}^{infty}pars{-z}^{k + 1}}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
partiald{}{z}pars{z over 1 + z} =
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 3}
\[5mm] = &
pars{-1}^{m}{-n - 3 choose m} =
pars{-1}^{m}bracks{{n + 3 + m - 1choose m}pars{-1}^{m}}
\[5mm] = &
bbx{n + m + 2 choose n + 2}
end{align}
$endgroup$
add a comment |
$begingroup$
The RHS can be written as $$sum_{i+j=n+m+1}binom{i}1binom{j}n$$where $binom{r}{s}:=0$ if $snotin{0,dots,r}$.
This equals: $$binom{n+2+m}{n+2}$$
See here for a proof of that. So RHS does not equal LHS.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031324%2fproving-binomn1mn1-sum-k-0mk1-binomnm-kn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{require{cancel}bcancel{cancel{n + 1 + m choose n + 1}} =
sum_{k = 0}^{m}pars{k + 1}{n + m - k choose n}: {LARGE ?}}$.
The right answer is
$bbx{ds{n + m + 2 choose n + 2}}$
$$
bbx{mbox{Note that} {n + m - k choose n} = 0
mbox{when} k > m}
$$
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{m}pars{k + 1}
{n + m - k choose n}} =
sum_{k = 0}^{infty}pars{k + 1}{n + m - k choose m - k}
\[5mm] = &
sum_{k = 0}^{infty}pars{k + 1}
bracks{{-n - 1 choose m - k}pars{-1}^{m - k}}
\[5mm] = &
pars{-1}^{m}sum_{k = 0}^{infty}pars{k + 1}pars{-1}^{k}
bracks{z^{m - k}}pars{1 + z}^{-n - 1}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1}
sum_{k = 0}^{infty}pars{k + 1}pars{-z}^{k}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
pars{-,partiald{}{z}sum_{k = 0}^{infty}pars{-z}^{k + 1}}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
partiald{}{z}pars{z over 1 + z} =
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 3}
\[5mm] = &
pars{-1}^{m}{-n - 3 choose m} =
pars{-1}^{m}bracks{{n + 3 + m - 1choose m}pars{-1}^{m}}
\[5mm] = &
bbx{n + m + 2 choose n + 2}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{require{cancel}bcancel{cancel{n + 1 + m choose n + 1}} =
sum_{k = 0}^{m}pars{k + 1}{n + m - k choose n}: {LARGE ?}}$.
The right answer is
$bbx{ds{n + m + 2 choose n + 2}}$
$$
bbx{mbox{Note that} {n + m - k choose n} = 0
mbox{when} k > m}
$$
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{m}pars{k + 1}
{n + m - k choose n}} =
sum_{k = 0}^{infty}pars{k + 1}{n + m - k choose m - k}
\[5mm] = &
sum_{k = 0}^{infty}pars{k + 1}
bracks{{-n - 1 choose m - k}pars{-1}^{m - k}}
\[5mm] = &
pars{-1}^{m}sum_{k = 0}^{infty}pars{k + 1}pars{-1}^{k}
bracks{z^{m - k}}pars{1 + z}^{-n - 1}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1}
sum_{k = 0}^{infty}pars{k + 1}pars{-z}^{k}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
pars{-,partiald{}{z}sum_{k = 0}^{infty}pars{-z}^{k + 1}}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
partiald{}{z}pars{z over 1 + z} =
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 3}
\[5mm] = &
pars{-1}^{m}{-n - 3 choose m} =
pars{-1}^{m}bracks{{n + 3 + m - 1choose m}pars{-1}^{m}}
\[5mm] = &
bbx{n + m + 2 choose n + 2}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{require{cancel}bcancel{cancel{n + 1 + m choose n + 1}} =
sum_{k = 0}^{m}pars{k + 1}{n + m - k choose n}: {LARGE ?}}$.
The right answer is
$bbx{ds{n + m + 2 choose n + 2}}$
$$
bbx{mbox{Note that} {n + m - k choose n} = 0
mbox{when} k > m}
$$
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{m}pars{k + 1}
{n + m - k choose n}} =
sum_{k = 0}^{infty}pars{k + 1}{n + m - k choose m - k}
\[5mm] = &
sum_{k = 0}^{infty}pars{k + 1}
bracks{{-n - 1 choose m - k}pars{-1}^{m - k}}
\[5mm] = &
pars{-1}^{m}sum_{k = 0}^{infty}pars{k + 1}pars{-1}^{k}
bracks{z^{m - k}}pars{1 + z}^{-n - 1}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1}
sum_{k = 0}^{infty}pars{k + 1}pars{-z}^{k}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
pars{-,partiald{}{z}sum_{k = 0}^{infty}pars{-z}^{k + 1}}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
partiald{}{z}pars{z over 1 + z} =
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 3}
\[5mm] = &
pars{-1}^{m}{-n - 3 choose m} =
pars{-1}^{m}bracks{{n + 3 + m - 1choose m}pars{-1}^{m}}
\[5mm] = &
bbx{n + m + 2 choose n + 2}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{require{cancel}bcancel{cancel{n + 1 + m choose n + 1}} =
sum_{k = 0}^{m}pars{k + 1}{n + m - k choose n}: {LARGE ?}}$.
The right answer is
$bbx{ds{n + m + 2 choose n + 2}}$
$$
bbx{mbox{Note that} {n + m - k choose n} = 0
mbox{when} k > m}
$$
begin{align}
&bbox[10px,#ffd]{sum_{k = 0}^{m}pars{k + 1}
{n + m - k choose n}} =
sum_{k = 0}^{infty}pars{k + 1}{n + m - k choose m - k}
\[5mm] = &
sum_{k = 0}^{infty}pars{k + 1}
bracks{{-n - 1 choose m - k}pars{-1}^{m - k}}
\[5mm] = &
pars{-1}^{m}sum_{k = 0}^{infty}pars{k + 1}pars{-1}^{k}
bracks{z^{m - k}}pars{1 + z}^{-n - 1}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1}
sum_{k = 0}^{infty}pars{k + 1}pars{-z}^{k}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
pars{-,partiald{}{z}sum_{k = 0}^{infty}pars{-z}^{k + 1}}
\[5mm] = &
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 1},
partiald{}{z}pars{z over 1 + z} =
pars{-1}^{m}bracks{z^{m}}pars{1 + z}^{-n - 3}
\[5mm] = &
pars{-1}^{m}{-n - 3 choose m} =
pars{-1}^{m}bracks{{n + 3 + m - 1choose m}pars{-1}^{m}}
\[5mm] = &
bbx{n + m + 2 choose n + 2}
end{align}
answered Dec 8 '18 at 20:30
Felix MarinFelix Marin
67.9k7107142
67.9k7107142
add a comment |
add a comment |
$begingroup$
The RHS can be written as $$sum_{i+j=n+m+1}binom{i}1binom{j}n$$where $binom{r}{s}:=0$ if $snotin{0,dots,r}$.
This equals: $$binom{n+2+m}{n+2}$$
See here for a proof of that. So RHS does not equal LHS.
$endgroup$
add a comment |
$begingroup$
The RHS can be written as $$sum_{i+j=n+m+1}binom{i}1binom{j}n$$where $binom{r}{s}:=0$ if $snotin{0,dots,r}$.
This equals: $$binom{n+2+m}{n+2}$$
See here for a proof of that. So RHS does not equal LHS.
$endgroup$
add a comment |
$begingroup$
The RHS can be written as $$sum_{i+j=n+m+1}binom{i}1binom{j}n$$where $binom{r}{s}:=0$ if $snotin{0,dots,r}$.
This equals: $$binom{n+2+m}{n+2}$$
See here for a proof of that. So RHS does not equal LHS.
$endgroup$
The RHS can be written as $$sum_{i+j=n+m+1}binom{i}1binom{j}n$$where $binom{r}{s}:=0$ if $snotin{0,dots,r}$.
This equals: $$binom{n+2+m}{n+2}$$
See here for a proof of that. So RHS does not equal LHS.
edited Dec 8 '18 at 17:01
answered Dec 8 '18 at 16:53
drhabdrhab
101k544130
101k544130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031324%2fproving-binomn1mn1-sum-k-0mk1-binomnm-kn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
If something is not true, you cannot prove that it is true.
$endgroup$
– Batominovski
Dec 8 '18 at 16:46
$begingroup$
@Batominovski If it is wrong, then why am I asked to prove the equation.
$endgroup$
– user982787
Dec 8 '18 at 17:23
1
$begingroup$
Mistakes happen. I hope you understand that humans are not perfect, regardless of their intelligence and experiences.
$endgroup$
– Batominovski
Dec 8 '18 at 17:26