An inequality for convex function from $mathbb R$ to $mathbb R$
$begingroup$
If $f(x): mathbb R to mathbb R$ is a convex function, prove that
$$f(x_1) + f(x_2) + f(x_3) + 3 f(frac{x_1 + x_2 + x_3}{3}) geq 2 f(frac{x_1 + x_2}{2}) + 2 f(frac{x_1 + x_3}{2}) + 2 f(frac{x_2 + x_3}{2})$$
What I have tried:
If two of $x_1$, $x_2$, $x_3$ are equal, without loss of generality, assuming $x_2 = x_3$, then the inequality degenerate to
begin{align}
f(x_1) + 3 f(frac{x_1 + 2 x_2}{3}) geq 4 f(frac{x_1 + x_2}{2})
end{align}
Since $f$ is convex, we have
$
frac{1}{4} f(x_1) + frac{3}{4} f(frac{x_1 + 2 x_2}{3})
geq f(frac{1}{4} x_1 + frac{3}{4} frac{x_1 + 2 x_2}{3})
geq f(frac{x_1 + x_2}{2})
$, thus the inequality holds.
Then we consider the case where $x_1$, $x_2$, $x_3$ are distinct. Without loss of generality, we assume $0 = x_1 < x_2 = lambda leq frac{1}{2} < x_3 = 1$. Then the inequality degenerates to
begin{align}
frac{1}{2} f(0) + frac{1}{2} f(lambda) + frac{3}{2} f(frac{lambda + 1}{3}) + frac{1}{2} f(1) geq f(frac{lambda}{2}) + f(frac{1}{2}) + f(frac{lambda + 1}{2})
end{align}
If $x_2 = frac{1}{2}$, it further degenerates to
$frac{1}{2} f(0) + frac{1}{2} f(0.5) + frac{1}{2} f(0.5) + frac{1}{2} f(1) geq f(0.25) + f(0.75),$
which is obviously true. Thus we can only consider $0 < lambda < frac{1}{2}$ (then $0 < frac{lambda}{2} < lambda < frac{lambda + 1}{3} < frac{1}{2} < frac{lambda + 1}{2} < 1$).
convex-analysis convex-optimization jensen-inequality
$endgroup$
add a comment |
$begingroup$
If $f(x): mathbb R to mathbb R$ is a convex function, prove that
$$f(x_1) + f(x_2) + f(x_3) + 3 f(frac{x_1 + x_2 + x_3}{3}) geq 2 f(frac{x_1 + x_2}{2}) + 2 f(frac{x_1 + x_3}{2}) + 2 f(frac{x_2 + x_3}{2})$$
What I have tried:
If two of $x_1$, $x_2$, $x_3$ are equal, without loss of generality, assuming $x_2 = x_3$, then the inequality degenerate to
begin{align}
f(x_1) + 3 f(frac{x_1 + 2 x_2}{3}) geq 4 f(frac{x_1 + x_2}{2})
end{align}
Since $f$ is convex, we have
$
frac{1}{4} f(x_1) + frac{3}{4} f(frac{x_1 + 2 x_2}{3})
geq f(frac{1}{4} x_1 + frac{3}{4} frac{x_1 + 2 x_2}{3})
geq f(frac{x_1 + x_2}{2})
$, thus the inequality holds.
Then we consider the case where $x_1$, $x_2$, $x_3$ are distinct. Without loss of generality, we assume $0 = x_1 < x_2 = lambda leq frac{1}{2} < x_3 = 1$. Then the inequality degenerates to
begin{align}
frac{1}{2} f(0) + frac{1}{2} f(lambda) + frac{3}{2} f(frac{lambda + 1}{3}) + frac{1}{2} f(1) geq f(frac{lambda}{2}) + f(frac{1}{2}) + f(frac{lambda + 1}{2})
end{align}
If $x_2 = frac{1}{2}$, it further degenerates to
$frac{1}{2} f(0) + frac{1}{2} f(0.5) + frac{1}{2} f(0.5) + frac{1}{2} f(1) geq f(0.25) + f(0.75),$
which is obviously true. Thus we can only consider $0 < lambda < frac{1}{2}$ (then $0 < frac{lambda}{2} < lambda < frac{lambda + 1}{3} < frac{1}{2} < frac{lambda + 1}{2} < 1$).
convex-analysis convex-optimization jensen-inequality
$endgroup$
1
$begingroup$
This is known as Popoviciu's inequality
$endgroup$
– munchhausen
Dec 19 '18 at 14:49
add a comment |
$begingroup$
If $f(x): mathbb R to mathbb R$ is a convex function, prove that
$$f(x_1) + f(x_2) + f(x_3) + 3 f(frac{x_1 + x_2 + x_3}{3}) geq 2 f(frac{x_1 + x_2}{2}) + 2 f(frac{x_1 + x_3}{2}) + 2 f(frac{x_2 + x_3}{2})$$
What I have tried:
If two of $x_1$, $x_2$, $x_3$ are equal, without loss of generality, assuming $x_2 = x_3$, then the inequality degenerate to
begin{align}
f(x_1) + 3 f(frac{x_1 + 2 x_2}{3}) geq 4 f(frac{x_1 + x_2}{2})
end{align}
Since $f$ is convex, we have
$
frac{1}{4} f(x_1) + frac{3}{4} f(frac{x_1 + 2 x_2}{3})
geq f(frac{1}{4} x_1 + frac{3}{4} frac{x_1 + 2 x_2}{3})
geq f(frac{x_1 + x_2}{2})
$, thus the inequality holds.
Then we consider the case where $x_1$, $x_2$, $x_3$ are distinct. Without loss of generality, we assume $0 = x_1 < x_2 = lambda leq frac{1}{2} < x_3 = 1$. Then the inequality degenerates to
begin{align}
frac{1}{2} f(0) + frac{1}{2} f(lambda) + frac{3}{2} f(frac{lambda + 1}{3}) + frac{1}{2} f(1) geq f(frac{lambda}{2}) + f(frac{1}{2}) + f(frac{lambda + 1}{2})
end{align}
If $x_2 = frac{1}{2}$, it further degenerates to
$frac{1}{2} f(0) + frac{1}{2} f(0.5) + frac{1}{2} f(0.5) + frac{1}{2} f(1) geq f(0.25) + f(0.75),$
which is obviously true. Thus we can only consider $0 < lambda < frac{1}{2}$ (then $0 < frac{lambda}{2} < lambda < frac{lambda + 1}{3} < frac{1}{2} < frac{lambda + 1}{2} < 1$).
convex-analysis convex-optimization jensen-inequality
$endgroup$
If $f(x): mathbb R to mathbb R$ is a convex function, prove that
$$f(x_1) + f(x_2) + f(x_3) + 3 f(frac{x_1 + x_2 + x_3}{3}) geq 2 f(frac{x_1 + x_2}{2}) + 2 f(frac{x_1 + x_3}{2}) + 2 f(frac{x_2 + x_3}{2})$$
What I have tried:
If two of $x_1$, $x_2$, $x_3$ are equal, without loss of generality, assuming $x_2 = x_3$, then the inequality degenerate to
begin{align}
f(x_1) + 3 f(frac{x_1 + 2 x_2}{3}) geq 4 f(frac{x_1 + x_2}{2})
end{align}
Since $f$ is convex, we have
$
frac{1}{4} f(x_1) + frac{3}{4} f(frac{x_1 + 2 x_2}{3})
geq f(frac{1}{4} x_1 + frac{3}{4} frac{x_1 + 2 x_2}{3})
geq f(frac{x_1 + x_2}{2})
$, thus the inequality holds.
Then we consider the case where $x_1$, $x_2$, $x_3$ are distinct. Without loss of generality, we assume $0 = x_1 < x_2 = lambda leq frac{1}{2} < x_3 = 1$. Then the inequality degenerates to
begin{align}
frac{1}{2} f(0) + frac{1}{2} f(lambda) + frac{3}{2} f(frac{lambda + 1}{3}) + frac{1}{2} f(1) geq f(frac{lambda}{2}) + f(frac{1}{2}) + f(frac{lambda + 1}{2})
end{align}
If $x_2 = frac{1}{2}$, it further degenerates to
$frac{1}{2} f(0) + frac{1}{2} f(0.5) + frac{1}{2} f(0.5) + frac{1}{2} f(1) geq f(0.25) + f(0.75),$
which is obviously true. Thus we can only consider $0 < lambda < frac{1}{2}$ (then $0 < frac{lambda}{2} < lambda < frac{lambda + 1}{3} < frac{1}{2} < frac{lambda + 1}{2} < 1$).
convex-analysis convex-optimization jensen-inequality
convex-analysis convex-optimization jensen-inequality
asked Dec 19 '18 at 14:13
Rubisco LeeRubisco Lee
1148
1148
1
$begingroup$
This is known as Popoviciu's inequality
$endgroup$
– munchhausen
Dec 19 '18 at 14:49
add a comment |
1
$begingroup$
This is known as Popoviciu's inequality
$endgroup$
– munchhausen
Dec 19 '18 at 14:49
1
1
$begingroup$
This is known as Popoviciu's inequality
$endgroup$
– munchhausen
Dec 19 '18 at 14:49
$begingroup$
This is known as Popoviciu's inequality
$endgroup$
– munchhausen
Dec 19 '18 at 14:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A proof of Popoviciu's inequality follows from Jensen's Inequality for convex functions. Wlog, assume $x le y le z$ there are two possibilities. Either $displaystyle y < frac{x+y+z}{3}$ or the reverse.
In the first case, $displaystyle frac{x+y+z}{3} < frac{x+z}{2}< z$ and $displaystyle frac{x+y+z}{3} < frac{y+z}{2} < z$, thus, there are positive real numbers $lambda_1,lambda_2 >0$ such that,
$displaystyle frac{x+z}{2} = lambda_1 z + (1-lambda_1)left(frac{x+y+z}{3}right)$ and $displaystyle frac{y+z}{2} = lambda_2 z + (1-lambda_2)left(frac{x+y+z}{3}right)$
It is easy to verify that $lambda_1 + lambda_2 = dfrac{1}{2}$.
Now, using Jensen's inequality one has:
$displaystyle fleft(frac{x+y}{2}right) le frac{f(x)+f(y)}{2}$
$displaystyle fleft(frac{x+z}{2}right) = lambda_1 f(z) + (1-lambda_1)fleft(frac{x+y+z}{3}right)$
$displaystyle fleft(frac{y+z}{2}right) = lambda_2 f(z) + (1-lambda_2)fleft(frac{x+y+z}{3}right)$
Adding the three inequalities gives the Popoviciu's inequality. The second case where $displaystyle y > frac{x+y+z}{3}$ we simply interchange the roles of $x$ and $z$ and the rest is similar.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046440%2fan-inequality-for-convex-function-from-mathbb-r-to-mathbb-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A proof of Popoviciu's inequality follows from Jensen's Inequality for convex functions. Wlog, assume $x le y le z$ there are two possibilities. Either $displaystyle y < frac{x+y+z}{3}$ or the reverse.
In the first case, $displaystyle frac{x+y+z}{3} < frac{x+z}{2}< z$ and $displaystyle frac{x+y+z}{3} < frac{y+z}{2} < z$, thus, there are positive real numbers $lambda_1,lambda_2 >0$ such that,
$displaystyle frac{x+z}{2} = lambda_1 z + (1-lambda_1)left(frac{x+y+z}{3}right)$ and $displaystyle frac{y+z}{2} = lambda_2 z + (1-lambda_2)left(frac{x+y+z}{3}right)$
It is easy to verify that $lambda_1 + lambda_2 = dfrac{1}{2}$.
Now, using Jensen's inequality one has:
$displaystyle fleft(frac{x+y}{2}right) le frac{f(x)+f(y)}{2}$
$displaystyle fleft(frac{x+z}{2}right) = lambda_1 f(z) + (1-lambda_1)fleft(frac{x+y+z}{3}right)$
$displaystyle fleft(frac{y+z}{2}right) = lambda_2 f(z) + (1-lambda_2)fleft(frac{x+y+z}{3}right)$
Adding the three inequalities gives the Popoviciu's inequality. The second case where $displaystyle y > frac{x+y+z}{3}$ we simply interchange the roles of $x$ and $z$ and the rest is similar.
$endgroup$
add a comment |
$begingroup$
A proof of Popoviciu's inequality follows from Jensen's Inequality for convex functions. Wlog, assume $x le y le z$ there are two possibilities. Either $displaystyle y < frac{x+y+z}{3}$ or the reverse.
In the first case, $displaystyle frac{x+y+z}{3} < frac{x+z}{2}< z$ and $displaystyle frac{x+y+z}{3} < frac{y+z}{2} < z$, thus, there are positive real numbers $lambda_1,lambda_2 >0$ such that,
$displaystyle frac{x+z}{2} = lambda_1 z + (1-lambda_1)left(frac{x+y+z}{3}right)$ and $displaystyle frac{y+z}{2} = lambda_2 z + (1-lambda_2)left(frac{x+y+z}{3}right)$
It is easy to verify that $lambda_1 + lambda_2 = dfrac{1}{2}$.
Now, using Jensen's inequality one has:
$displaystyle fleft(frac{x+y}{2}right) le frac{f(x)+f(y)}{2}$
$displaystyle fleft(frac{x+z}{2}right) = lambda_1 f(z) + (1-lambda_1)fleft(frac{x+y+z}{3}right)$
$displaystyle fleft(frac{y+z}{2}right) = lambda_2 f(z) + (1-lambda_2)fleft(frac{x+y+z}{3}right)$
Adding the three inequalities gives the Popoviciu's inequality. The second case where $displaystyle y > frac{x+y+z}{3}$ we simply interchange the roles of $x$ and $z$ and the rest is similar.
$endgroup$
add a comment |
$begingroup$
A proof of Popoviciu's inequality follows from Jensen's Inequality for convex functions. Wlog, assume $x le y le z$ there are two possibilities. Either $displaystyle y < frac{x+y+z}{3}$ or the reverse.
In the first case, $displaystyle frac{x+y+z}{3} < frac{x+z}{2}< z$ and $displaystyle frac{x+y+z}{3} < frac{y+z}{2} < z$, thus, there are positive real numbers $lambda_1,lambda_2 >0$ such that,
$displaystyle frac{x+z}{2} = lambda_1 z + (1-lambda_1)left(frac{x+y+z}{3}right)$ and $displaystyle frac{y+z}{2} = lambda_2 z + (1-lambda_2)left(frac{x+y+z}{3}right)$
It is easy to verify that $lambda_1 + lambda_2 = dfrac{1}{2}$.
Now, using Jensen's inequality one has:
$displaystyle fleft(frac{x+y}{2}right) le frac{f(x)+f(y)}{2}$
$displaystyle fleft(frac{x+z}{2}right) = lambda_1 f(z) + (1-lambda_1)fleft(frac{x+y+z}{3}right)$
$displaystyle fleft(frac{y+z}{2}right) = lambda_2 f(z) + (1-lambda_2)fleft(frac{x+y+z}{3}right)$
Adding the three inequalities gives the Popoviciu's inequality. The second case where $displaystyle y > frac{x+y+z}{3}$ we simply interchange the roles of $x$ and $z$ and the rest is similar.
$endgroup$
A proof of Popoviciu's inequality follows from Jensen's Inequality for convex functions. Wlog, assume $x le y le z$ there are two possibilities. Either $displaystyle y < frac{x+y+z}{3}$ or the reverse.
In the first case, $displaystyle frac{x+y+z}{3} < frac{x+z}{2}< z$ and $displaystyle frac{x+y+z}{3} < frac{y+z}{2} < z$, thus, there are positive real numbers $lambda_1,lambda_2 >0$ such that,
$displaystyle frac{x+z}{2} = lambda_1 z + (1-lambda_1)left(frac{x+y+z}{3}right)$ and $displaystyle frac{y+z}{2} = lambda_2 z + (1-lambda_2)left(frac{x+y+z}{3}right)$
It is easy to verify that $lambda_1 + lambda_2 = dfrac{1}{2}$.
Now, using Jensen's inequality one has:
$displaystyle fleft(frac{x+y}{2}right) le frac{f(x)+f(y)}{2}$
$displaystyle fleft(frac{x+z}{2}right) = lambda_1 f(z) + (1-lambda_1)fleft(frac{x+y+z}{3}right)$
$displaystyle fleft(frac{y+z}{2}right) = lambda_2 f(z) + (1-lambda_2)fleft(frac{x+y+z}{3}right)$
Adding the three inequalities gives the Popoviciu's inequality. The second case where $displaystyle y > frac{x+y+z}{3}$ we simply interchange the roles of $x$ and $z$ and the rest is similar.
answered Dec 19 '18 at 14:41
r9mr9m
13.3k24171
13.3k24171
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046440%2fan-inequality-for-convex-function-from-mathbb-r-to-mathbb-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
This is known as Popoviciu's inequality
$endgroup$
– munchhausen
Dec 19 '18 at 14:49