Proof verification of $x_n = sum_{k=1}^n a_kq^k$ is Cauchy given $|a_k| le C, |q| < 1, kinBbb N$












2












$begingroup$



Given a sequence ${x_n}$:
$$
x_n = sum_{k=1}^n a_kq^k
$$

and:
$$
begin{cases}
|a_k| le C\
|q| < 1\
kinBbb N
end{cases}
$$

Prove ${x_n}$ is a fundamental sequence.




By definition of a fundamental sequence we want to show: $|x_n - x_m| < epsilon$. So:
$$
begin{align}
|x_n - x_m| &= left|sum_{k=1}^n a_kq^k - sum_{k=1}^m a_kq^kright| stackrel{m>n}{=} \
&= left|sum_{k=n+1}^m a_kq^k right| le \
&le sum_{k=n+1}^m left|a_kq^k right| le \ &le sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}
end{align}
$$



Let $m > n$:
$$
frac{Cq(q^m - q^n)}{q-1} = frac{Cq(q^n - q^m)}{1-q} le frac{Cq^{n+1}}{1-q}
$$

Let $q$:
$$
q = frac{1}{1+r}, r in Bbb R_{>0}
$$

Then:
$$
frac{Cq^{n+1}}{1-q} = frac{Cq}{(1-q)(1+r)^{n}} stackrel{n > N}{le} frac{Cq}{(1-q)(1+r)^{N}} < epsilon
$$

Finally:
$$
frac{Cq}{(1-q)(1+r)^{N}} < epsilon iff (1+r)^{N} > frac{Cq}{(1-q)epsilon} \
iff N > log_{1+r} frac{Cq}{(1-q)epsilon} implies |x_n - x_m| < epsilon
$$



I'm kindly asking to verify the proof above. Thank you.










share|cite|improve this question











$endgroup$

















    2












    $begingroup$



    Given a sequence ${x_n}$:
    $$
    x_n = sum_{k=1}^n a_kq^k
    $$

    and:
    $$
    begin{cases}
    |a_k| le C\
    |q| < 1\
    kinBbb N
    end{cases}
    $$

    Prove ${x_n}$ is a fundamental sequence.




    By definition of a fundamental sequence we want to show: $|x_n - x_m| < epsilon$. So:
    $$
    begin{align}
    |x_n - x_m| &= left|sum_{k=1}^n a_kq^k - sum_{k=1}^m a_kq^kright| stackrel{m>n}{=} \
    &= left|sum_{k=n+1}^m a_kq^k right| le \
    &le sum_{k=n+1}^m left|a_kq^k right| le \ &le sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}
    end{align}
    $$



    Let $m > n$:
    $$
    frac{Cq(q^m - q^n)}{q-1} = frac{Cq(q^n - q^m)}{1-q} le frac{Cq^{n+1}}{1-q}
    $$

    Let $q$:
    $$
    q = frac{1}{1+r}, r in Bbb R_{>0}
    $$

    Then:
    $$
    frac{Cq^{n+1}}{1-q} = frac{Cq}{(1-q)(1+r)^{n}} stackrel{n > N}{le} frac{Cq}{(1-q)(1+r)^{N}} < epsilon
    $$

    Finally:
    $$
    frac{Cq}{(1-q)(1+r)^{N}} < epsilon iff (1+r)^{N} > frac{Cq}{(1-q)epsilon} \
    iff N > log_{1+r} frac{Cq}{(1-q)epsilon} implies |x_n - x_m| < epsilon
    $$



    I'm kindly asking to verify the proof above. Thank you.










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$



      Given a sequence ${x_n}$:
      $$
      x_n = sum_{k=1}^n a_kq^k
      $$

      and:
      $$
      begin{cases}
      |a_k| le C\
      |q| < 1\
      kinBbb N
      end{cases}
      $$

      Prove ${x_n}$ is a fundamental sequence.




      By definition of a fundamental sequence we want to show: $|x_n - x_m| < epsilon$. So:
      $$
      begin{align}
      |x_n - x_m| &= left|sum_{k=1}^n a_kq^k - sum_{k=1}^m a_kq^kright| stackrel{m>n}{=} \
      &= left|sum_{k=n+1}^m a_kq^k right| le \
      &le sum_{k=n+1}^m left|a_kq^k right| le \ &le sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}
      end{align}
      $$



      Let $m > n$:
      $$
      frac{Cq(q^m - q^n)}{q-1} = frac{Cq(q^n - q^m)}{1-q} le frac{Cq^{n+1}}{1-q}
      $$

      Let $q$:
      $$
      q = frac{1}{1+r}, r in Bbb R_{>0}
      $$

      Then:
      $$
      frac{Cq^{n+1}}{1-q} = frac{Cq}{(1-q)(1+r)^{n}} stackrel{n > N}{le} frac{Cq}{(1-q)(1+r)^{N}} < epsilon
      $$

      Finally:
      $$
      frac{Cq}{(1-q)(1+r)^{N}} < epsilon iff (1+r)^{N} > frac{Cq}{(1-q)epsilon} \
      iff N > log_{1+r} frac{Cq}{(1-q)epsilon} implies |x_n - x_m| < epsilon
      $$



      I'm kindly asking to verify the proof above. Thank you.










      share|cite|improve this question











      $endgroup$





      Given a sequence ${x_n}$:
      $$
      x_n = sum_{k=1}^n a_kq^k
      $$

      and:
      $$
      begin{cases}
      |a_k| le C\
      |q| < 1\
      kinBbb N
      end{cases}
      $$

      Prove ${x_n}$ is a fundamental sequence.




      By definition of a fundamental sequence we want to show: $|x_n - x_m| < epsilon$. So:
      $$
      begin{align}
      |x_n - x_m| &= left|sum_{k=1}^n a_kq^k - sum_{k=1}^m a_kq^kright| stackrel{m>n}{=} \
      &= left|sum_{k=n+1}^m a_kq^k right| le \
      &le sum_{k=n+1}^m left|a_kq^k right| le \ &le sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}
      end{align}
      $$



      Let $m > n$:
      $$
      frac{Cq(q^m - q^n)}{q-1} = frac{Cq(q^n - q^m)}{1-q} le frac{Cq^{n+1}}{1-q}
      $$

      Let $q$:
      $$
      q = frac{1}{1+r}, r in Bbb R_{>0}
      $$

      Then:
      $$
      frac{Cq^{n+1}}{1-q} = frac{Cq}{(1-q)(1+r)^{n}} stackrel{n > N}{le} frac{Cq}{(1-q)(1+r)^{N}} < epsilon
      $$

      Finally:
      $$
      frac{Cq}{(1-q)(1+r)^{N}} < epsilon iff (1+r)^{N} > frac{Cq}{(1-q)epsilon} \
      iff N > log_{1+r} frac{Cq}{(1-q)epsilon} implies |x_n - x_m| < epsilon
      $$



      I'm kindly asking to verify the proof above. Thank you.







      calculus sequences-and-series proof-verification cauchy-sequences






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 19 '18 at 14:24







      roman

















      asked Dec 19 '18 at 14:17









      romanroman

      2,36921224




      2,36921224






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Well done.



          If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$



          A quick fix is just to change $q$ to $|q|$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            indeed, you are right! thanks for the notice
            $endgroup$
            – roman
            Dec 19 '18 at 14:52











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046442%2fproof-verification-of-x-n-sum-k-1n-a-kqk-is-cauchy-given-a-k-le-c%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Well done.



          If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$



          A quick fix is just to change $q$ to $|q|$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            indeed, you are right! thanks for the notice
            $endgroup$
            – roman
            Dec 19 '18 at 14:52
















          2












          $begingroup$

          Well done.



          If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$



          A quick fix is just to change $q$ to $|q|$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            indeed, you are right! thanks for the notice
            $endgroup$
            – roman
            Dec 19 '18 at 14:52














          2












          2








          2





          $begingroup$

          Well done.



          If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$



          A quick fix is just to change $q$ to $|q|$.






          share|cite|improve this answer









          $endgroup$



          Well done.



          If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$



          A quick fix is just to change $q$ to $|q|$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 19 '18 at 14:39









          Siong Thye GohSiong Thye Goh

          103k1468119




          103k1468119












          • $begingroup$
            indeed, you are right! thanks for the notice
            $endgroup$
            – roman
            Dec 19 '18 at 14:52


















          • $begingroup$
            indeed, you are right! thanks for the notice
            $endgroup$
            – roman
            Dec 19 '18 at 14:52
















          $begingroup$
          indeed, you are right! thanks for the notice
          $endgroup$
          – roman
          Dec 19 '18 at 14:52




          $begingroup$
          indeed, you are right! thanks for the notice
          $endgroup$
          – roman
          Dec 19 '18 at 14:52


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046442%2fproof-verification-of-x-n-sum-k-1n-a-kqk-is-cauchy-given-a-k-le-c%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten