Proof verification of $x_n = sum_{k=1}^n a_kq^k$ is Cauchy given $|a_k| le C, |q| < 1, kinBbb N$
$begingroup$
Given a sequence ${x_n}$:
$$
x_n = sum_{k=1}^n a_kq^k
$$
and:
$$
begin{cases}
|a_k| le C\
|q| < 1\
kinBbb N
end{cases}
$$
Prove ${x_n}$ is a fundamental sequence.
By definition of a fundamental sequence we want to show: $|x_n - x_m| < epsilon$. So:
$$
begin{align}
|x_n - x_m| &= left|sum_{k=1}^n a_kq^k - sum_{k=1}^m a_kq^kright| stackrel{m>n}{=} \
&= left|sum_{k=n+1}^m a_kq^k right| le \
&le sum_{k=n+1}^m left|a_kq^k right| le \ &le sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}
end{align}
$$
Let $m > n$:
$$
frac{Cq(q^m - q^n)}{q-1} = frac{Cq(q^n - q^m)}{1-q} le frac{Cq^{n+1}}{1-q}
$$
Let $q$:
$$
q = frac{1}{1+r}, r in Bbb R_{>0}
$$
Then:
$$
frac{Cq^{n+1}}{1-q} = frac{Cq}{(1-q)(1+r)^{n}} stackrel{n > N}{le} frac{Cq}{(1-q)(1+r)^{N}} < epsilon
$$
Finally:
$$
frac{Cq}{(1-q)(1+r)^{N}} < epsilon iff (1+r)^{N} > frac{Cq}{(1-q)epsilon} \
iff N > log_{1+r} frac{Cq}{(1-q)epsilon} implies |x_n - x_m| < epsilon
$$
I'm kindly asking to verify the proof above. Thank you.
calculus sequences-and-series proof-verification cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Given a sequence ${x_n}$:
$$
x_n = sum_{k=1}^n a_kq^k
$$
and:
$$
begin{cases}
|a_k| le C\
|q| < 1\
kinBbb N
end{cases}
$$
Prove ${x_n}$ is a fundamental sequence.
By definition of a fundamental sequence we want to show: $|x_n - x_m| < epsilon$. So:
$$
begin{align}
|x_n - x_m| &= left|sum_{k=1}^n a_kq^k - sum_{k=1}^m a_kq^kright| stackrel{m>n}{=} \
&= left|sum_{k=n+1}^m a_kq^k right| le \
&le sum_{k=n+1}^m left|a_kq^k right| le \ &le sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}
end{align}
$$
Let $m > n$:
$$
frac{Cq(q^m - q^n)}{q-1} = frac{Cq(q^n - q^m)}{1-q} le frac{Cq^{n+1}}{1-q}
$$
Let $q$:
$$
q = frac{1}{1+r}, r in Bbb R_{>0}
$$
Then:
$$
frac{Cq^{n+1}}{1-q} = frac{Cq}{(1-q)(1+r)^{n}} stackrel{n > N}{le} frac{Cq}{(1-q)(1+r)^{N}} < epsilon
$$
Finally:
$$
frac{Cq}{(1-q)(1+r)^{N}} < epsilon iff (1+r)^{N} > frac{Cq}{(1-q)epsilon} \
iff N > log_{1+r} frac{Cq}{(1-q)epsilon} implies |x_n - x_m| < epsilon
$$
I'm kindly asking to verify the proof above. Thank you.
calculus sequences-and-series proof-verification cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Given a sequence ${x_n}$:
$$
x_n = sum_{k=1}^n a_kq^k
$$
and:
$$
begin{cases}
|a_k| le C\
|q| < 1\
kinBbb N
end{cases}
$$
Prove ${x_n}$ is a fundamental sequence.
By definition of a fundamental sequence we want to show: $|x_n - x_m| < epsilon$. So:
$$
begin{align}
|x_n - x_m| &= left|sum_{k=1}^n a_kq^k - sum_{k=1}^m a_kq^kright| stackrel{m>n}{=} \
&= left|sum_{k=n+1}^m a_kq^k right| le \
&le sum_{k=n+1}^m left|a_kq^k right| le \ &le sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}
end{align}
$$
Let $m > n$:
$$
frac{Cq(q^m - q^n)}{q-1} = frac{Cq(q^n - q^m)}{1-q} le frac{Cq^{n+1}}{1-q}
$$
Let $q$:
$$
q = frac{1}{1+r}, r in Bbb R_{>0}
$$
Then:
$$
frac{Cq^{n+1}}{1-q} = frac{Cq}{(1-q)(1+r)^{n}} stackrel{n > N}{le} frac{Cq}{(1-q)(1+r)^{N}} < epsilon
$$
Finally:
$$
frac{Cq}{(1-q)(1+r)^{N}} < epsilon iff (1+r)^{N} > frac{Cq}{(1-q)epsilon} \
iff N > log_{1+r} frac{Cq}{(1-q)epsilon} implies |x_n - x_m| < epsilon
$$
I'm kindly asking to verify the proof above. Thank you.
calculus sequences-and-series proof-verification cauchy-sequences
$endgroup$
Given a sequence ${x_n}$:
$$
x_n = sum_{k=1}^n a_kq^k
$$
and:
$$
begin{cases}
|a_k| le C\
|q| < 1\
kinBbb N
end{cases}
$$
Prove ${x_n}$ is a fundamental sequence.
By definition of a fundamental sequence we want to show: $|x_n - x_m| < epsilon$. So:
$$
begin{align}
|x_n - x_m| &= left|sum_{k=1}^n a_kq^k - sum_{k=1}^m a_kq^kright| stackrel{m>n}{=} \
&= left|sum_{k=n+1}^m a_kq^k right| le \
&le sum_{k=n+1}^m left|a_kq^k right| le \ &le sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}
end{align}
$$
Let $m > n$:
$$
frac{Cq(q^m - q^n)}{q-1} = frac{Cq(q^n - q^m)}{1-q} le frac{Cq^{n+1}}{1-q}
$$
Let $q$:
$$
q = frac{1}{1+r}, r in Bbb R_{>0}
$$
Then:
$$
frac{Cq^{n+1}}{1-q} = frac{Cq}{(1-q)(1+r)^{n}} stackrel{n > N}{le} frac{Cq}{(1-q)(1+r)^{N}} < epsilon
$$
Finally:
$$
frac{Cq}{(1-q)(1+r)^{N}} < epsilon iff (1+r)^{N} > frac{Cq}{(1-q)epsilon} \
iff N > log_{1+r} frac{Cq}{(1-q)epsilon} implies |x_n - x_m| < epsilon
$$
I'm kindly asking to verify the proof above. Thank you.
calculus sequences-and-series proof-verification cauchy-sequences
calculus sequences-and-series proof-verification cauchy-sequences
edited Dec 19 '18 at 14:24
roman
asked Dec 19 '18 at 14:17
romanroman
2,36921224
2,36921224
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Well done.
If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$
A quick fix is just to change $q$ to $|q|$.
$endgroup$
$begingroup$
indeed, you are right! thanks for the notice
$endgroup$
– roman
Dec 19 '18 at 14:52
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046442%2fproof-verification-of-x-n-sum-k-1n-a-kqk-is-cauchy-given-a-k-le-c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well done.
If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$
A quick fix is just to change $q$ to $|q|$.
$endgroup$
$begingroup$
indeed, you are right! thanks for the notice
$endgroup$
– roman
Dec 19 '18 at 14:52
add a comment |
$begingroup$
Well done.
If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$
A quick fix is just to change $q$ to $|q|$.
$endgroup$
$begingroup$
indeed, you are right! thanks for the notice
$endgroup$
– roman
Dec 19 '18 at 14:52
add a comment |
$begingroup$
Well done.
If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$
A quick fix is just to change $q$ to $|q|$.
$endgroup$
Well done.
If I want to nitpick, a very minor issue is that it is possible that $q$ can be negative. Hence, making this statement false.$$sum_{k=n+1}^m left|Cq^k right| stackrel{text{geom. sum}}{=} frac{Cq(q^m - q^n)}{q-1}$$
A quick fix is just to change $q$ to $|q|$.
answered Dec 19 '18 at 14:39
Siong Thye GohSiong Thye Goh
103k1468119
103k1468119
$begingroup$
indeed, you are right! thanks for the notice
$endgroup$
– roman
Dec 19 '18 at 14:52
add a comment |
$begingroup$
indeed, you are right! thanks for the notice
$endgroup$
– roman
Dec 19 '18 at 14:52
$begingroup$
indeed, you are right! thanks for the notice
$endgroup$
– roman
Dec 19 '18 at 14:52
$begingroup$
indeed, you are right! thanks for the notice
$endgroup$
– roman
Dec 19 '18 at 14:52
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046442%2fproof-verification-of-x-n-sum-k-1n-a-kqk-is-cauchy-given-a-k-le-c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown