Solving a equation set
$begingroup$
For any positive integer $m$, let $y=y(z)$ be a complex function, such that
begin{align*}
left{ {begin{array}{*{20}{c}} frac{dy}{dz}+y^m=1,
\ \
frac{dlog(y)}{dz}=frac{m^2e^{-mz}}{1-e^{-m^2z}}, \
end{array} } right.
end{align*}
with the initial conditions $y(0)=0$ and $limlimits_{zrightarrow infty}y(z)=1$. Does this function $y(z)$ exist?
For example, if $m=1$, we have $y(z)=1-e^{-z}$. If $m=2$, we have $y(z)=tanh(z)$.
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
For any positive integer $m$, let $y=y(z)$ be a complex function, such that
begin{align*}
left{ {begin{array}{*{20}{c}} frac{dy}{dz}+y^m=1,
\ \
frac{dlog(y)}{dz}=frac{m^2e^{-mz}}{1-e^{-m^2z}}, \
end{array} } right.
end{align*}
with the initial conditions $y(0)=0$ and $limlimits_{zrightarrow infty}y(z)=1$. Does this function $y(z)$ exist?
For example, if $m=1$, we have $y(z)=1-e^{-z}$. If $m=2$, we have $y(z)=tanh(z)$.
ordinary-differential-equations
$endgroup$
$begingroup$
The function $1-e^{-z}$ has an essential singularity at $infty$, and $lim_{xtoinfty}(1-e^{-z})$ does not exist. May be you mean $lim_{xto+infty, xinBbb R}$?
$endgroup$
– Julián Aguirre
Dec 19 '18 at 14:13
$begingroup$
Using $$frac{d log y}{dz}= frac{1}{y} frac{dy}{dz}$$ in the second equation leads to $$frac{dy}{dz} = frac{m^2 e^{-mz}}{1-e^{-m^2z}} y.$$ Then, using the first equation, we obtain that $y$ is defined implicitly by the relation $$frac{m^2 e^{-mz}}{1-e^{-m^2z}} y=1-y^m,$$ which agrees with your result for $m=1$.
$endgroup$
– rafa11111
Dec 19 '18 at 14:15
add a comment |
$begingroup$
For any positive integer $m$, let $y=y(z)$ be a complex function, such that
begin{align*}
left{ {begin{array}{*{20}{c}} frac{dy}{dz}+y^m=1,
\ \
frac{dlog(y)}{dz}=frac{m^2e^{-mz}}{1-e^{-m^2z}}, \
end{array} } right.
end{align*}
with the initial conditions $y(0)=0$ and $limlimits_{zrightarrow infty}y(z)=1$. Does this function $y(z)$ exist?
For example, if $m=1$, we have $y(z)=1-e^{-z}$. If $m=2$, we have $y(z)=tanh(z)$.
ordinary-differential-equations
$endgroup$
For any positive integer $m$, let $y=y(z)$ be a complex function, such that
begin{align*}
left{ {begin{array}{*{20}{c}} frac{dy}{dz}+y^m=1,
\ \
frac{dlog(y)}{dz}=frac{m^2e^{-mz}}{1-e^{-m^2z}}, \
end{array} } right.
end{align*}
with the initial conditions $y(0)=0$ and $limlimits_{zrightarrow infty}y(z)=1$. Does this function $y(z)$ exist?
For example, if $m=1$, we have $y(z)=1-e^{-z}$. If $m=2$, we have $y(z)=tanh(z)$.
ordinary-differential-equations
ordinary-differential-equations
asked Dec 19 '18 at 14:02
xuce1234xuce1234
486
486
$begingroup$
The function $1-e^{-z}$ has an essential singularity at $infty$, and $lim_{xtoinfty}(1-e^{-z})$ does not exist. May be you mean $lim_{xto+infty, xinBbb R}$?
$endgroup$
– Julián Aguirre
Dec 19 '18 at 14:13
$begingroup$
Using $$frac{d log y}{dz}= frac{1}{y} frac{dy}{dz}$$ in the second equation leads to $$frac{dy}{dz} = frac{m^2 e^{-mz}}{1-e^{-m^2z}} y.$$ Then, using the first equation, we obtain that $y$ is defined implicitly by the relation $$frac{m^2 e^{-mz}}{1-e^{-m^2z}} y=1-y^m,$$ which agrees with your result for $m=1$.
$endgroup$
– rafa11111
Dec 19 '18 at 14:15
add a comment |
$begingroup$
The function $1-e^{-z}$ has an essential singularity at $infty$, and $lim_{xtoinfty}(1-e^{-z})$ does not exist. May be you mean $lim_{xto+infty, xinBbb R}$?
$endgroup$
– Julián Aguirre
Dec 19 '18 at 14:13
$begingroup$
Using $$frac{d log y}{dz}= frac{1}{y} frac{dy}{dz}$$ in the second equation leads to $$frac{dy}{dz} = frac{m^2 e^{-mz}}{1-e^{-m^2z}} y.$$ Then, using the first equation, we obtain that $y$ is defined implicitly by the relation $$frac{m^2 e^{-mz}}{1-e^{-m^2z}} y=1-y^m,$$ which agrees with your result for $m=1$.
$endgroup$
– rafa11111
Dec 19 '18 at 14:15
$begingroup$
The function $1-e^{-z}$ has an essential singularity at $infty$, and $lim_{xtoinfty}(1-e^{-z})$ does not exist. May be you mean $lim_{xto+infty, xinBbb R}$?
$endgroup$
– Julián Aguirre
Dec 19 '18 at 14:13
$begingroup$
The function $1-e^{-z}$ has an essential singularity at $infty$, and $lim_{xtoinfty}(1-e^{-z})$ does not exist. May be you mean $lim_{xto+infty, xinBbb R}$?
$endgroup$
– Julián Aguirre
Dec 19 '18 at 14:13
$begingroup$
Using $$frac{d log y}{dz}= frac{1}{y} frac{dy}{dz}$$ in the second equation leads to $$frac{dy}{dz} = frac{m^2 e^{-mz}}{1-e^{-m^2z}} y.$$ Then, using the first equation, we obtain that $y$ is defined implicitly by the relation $$frac{m^2 e^{-mz}}{1-e^{-m^2z}} y=1-y^m,$$ which agrees with your result for $m=1$.
$endgroup$
– rafa11111
Dec 19 '18 at 14:15
$begingroup$
Using $$frac{d log y}{dz}= frac{1}{y} frac{dy}{dz}$$ in the second equation leads to $$frac{dy}{dz} = frac{m^2 e^{-mz}}{1-e^{-m^2z}} y.$$ Then, using the first equation, we obtain that $y$ is defined implicitly by the relation $$frac{m^2 e^{-mz}}{1-e^{-m^2z}} y=1-y^m,$$ which agrees with your result for $m=1$.
$endgroup$
– rafa11111
Dec 19 '18 at 14:15
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046423%2fsolving-a-equation-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046423%2fsolving-a-equation-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The function $1-e^{-z}$ has an essential singularity at $infty$, and $lim_{xtoinfty}(1-e^{-z})$ does not exist. May be you mean $lim_{xto+infty, xinBbb R}$?
$endgroup$
– Julián Aguirre
Dec 19 '18 at 14:13
$begingroup$
Using $$frac{d log y}{dz}= frac{1}{y} frac{dy}{dz}$$ in the second equation leads to $$frac{dy}{dz} = frac{m^2 e^{-mz}}{1-e^{-m^2z}} y.$$ Then, using the first equation, we obtain that $y$ is defined implicitly by the relation $$frac{m^2 e^{-mz}}{1-e^{-m^2z}} y=1-y^m,$$ which agrees with your result for $m=1$.
$endgroup$
– rafa11111
Dec 19 '18 at 14:15