Show that $f$ is a bounded linear functional and find its norm
$begingroup$
Let $f : l^{1} to {mathbb R}$ and
$f(x) = sum (1-1/n) x_n$
Where $x = (x_1, x_2 , ldots)$
Show that $f$ is a bounded linear functional and find its norm.
My work :
$| f | = | sum (1-1/n) x_n |$
$leq sum | (1-1/n) | cdot | x_n |$
$<leq | x | sum (1-1/n)$
But what I can do after that?
functional-analysis norm
$endgroup$
add a comment |
$begingroup$
Let $f : l^{1} to {mathbb R}$ and
$f(x) = sum (1-1/n) x_n$
Where $x = (x_1, x_2 , ldots)$
Show that $f$ is a bounded linear functional and find its norm.
My work :
$| f | = | sum (1-1/n) x_n |$
$leq sum | (1-1/n) | cdot | x_n |$
$<leq | x | sum (1-1/n)$
But what I can do after that?
functional-analysis norm
$endgroup$
$begingroup$
Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
$endgroup$
– José Carlos Santos
Dec 19 '18 at 13:42
$begingroup$
use the triangle inequality
$endgroup$
– tonydo
Dec 19 '18 at 13:45
add a comment |
$begingroup$
Let $f : l^{1} to {mathbb R}$ and
$f(x) = sum (1-1/n) x_n$
Where $x = (x_1, x_2 , ldots)$
Show that $f$ is a bounded linear functional and find its norm.
My work :
$| f | = | sum (1-1/n) x_n |$
$leq sum | (1-1/n) | cdot | x_n |$
$<leq | x | sum (1-1/n)$
But what I can do after that?
functional-analysis norm
$endgroup$
Let $f : l^{1} to {mathbb R}$ and
$f(x) = sum (1-1/n) x_n$
Where $x = (x_1, x_2 , ldots)$
Show that $f$ is a bounded linear functional and find its norm.
My work :
$| f | = | sum (1-1/n) x_n |$
$leq sum | (1-1/n) | cdot | x_n |$
$<leq | x | sum (1-1/n)$
But what I can do after that?
functional-analysis norm
functional-analysis norm
edited Dec 19 '18 at 14:54
Namaste
1
1
asked Dec 19 '18 at 13:39
Duaa HamzehDuaa Hamzeh
524
524
$begingroup$
Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
$endgroup$
– José Carlos Santos
Dec 19 '18 at 13:42
$begingroup$
use the triangle inequality
$endgroup$
– tonydo
Dec 19 '18 at 13:45
add a comment |
$begingroup$
Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
$endgroup$
– José Carlos Santos
Dec 19 '18 at 13:42
$begingroup$
use the triangle inequality
$endgroup$
– tonydo
Dec 19 '18 at 13:45
$begingroup$
Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
$endgroup$
– José Carlos Santos
Dec 19 '18 at 13:42
$begingroup$
Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
$endgroup$
– José Carlos Santos
Dec 19 '18 at 13:42
$begingroup$
use the triangle inequality
$endgroup$
– tonydo
Dec 19 '18 at 13:45
$begingroup$
use the triangle inequality
$endgroup$
– tonydo
Dec 19 '18 at 13:45
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.
Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.
$endgroup$
add a comment |
$begingroup$
$xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$
$endgroup$
1
$begingroup$
Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
$endgroup$
– postmortes
Dec 19 '18 at 14:16
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046396%2fshow-that-f-is-a-bounded-linear-functional-and-find-its-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.
Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.
$endgroup$
add a comment |
$begingroup$
We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.
Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.
$endgroup$
add a comment |
$begingroup$
We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.
Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.
$endgroup$
We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.
Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.
answered Dec 19 '18 at 13:46
FredFred
48.6k11849
48.6k11849
add a comment |
add a comment |
$begingroup$
$xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$
$endgroup$
1
$begingroup$
Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
$endgroup$
– postmortes
Dec 19 '18 at 14:16
add a comment |
$begingroup$
$xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$
$endgroup$
1
$begingroup$
Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
$endgroup$
– postmortes
Dec 19 '18 at 14:16
add a comment |
$begingroup$
$xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$
$endgroup$
$xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$
answered Dec 19 '18 at 13:50
John_WickJohn_Wick
1,616111
1,616111
1
$begingroup$
Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
$endgroup$
– postmortes
Dec 19 '18 at 14:16
add a comment |
1
$begingroup$
Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
$endgroup$
– postmortes
Dec 19 '18 at 14:16
1
1
$begingroup$
Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
$endgroup$
– postmortes
Dec 19 '18 at 14:16
$begingroup$
Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
$endgroup$
– postmortes
Dec 19 '18 at 14:16
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046396%2fshow-that-f-is-a-bounded-linear-functional-and-find-its-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
$endgroup$
– José Carlos Santos
Dec 19 '18 at 13:42
$begingroup$
use the triangle inequality
$endgroup$
– tonydo
Dec 19 '18 at 13:45