Show that $f$ is a bounded linear functional and find its norm












0












$begingroup$


Let $f : l^{1} to {mathbb R}$ and



$f(x) = sum (1-1/n) x_n$



Where $x = (x_1, x_2 , ldots)$



Show that $f$ is a bounded linear functional and find its norm.



My work :
$| f | = | sum (1-1/n) x_n |$



$leq sum | (1-1/n) | cdot | x_n |$



$<leq | x | sum (1-1/n)$



But what I can do after that?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
    $endgroup$
    – José Carlos Santos
    Dec 19 '18 at 13:42










  • $begingroup$
    use the triangle inequality
    $endgroup$
    – tonydo
    Dec 19 '18 at 13:45
















0












$begingroup$


Let $f : l^{1} to {mathbb R}$ and



$f(x) = sum (1-1/n) x_n$



Where $x = (x_1, x_2 , ldots)$



Show that $f$ is a bounded linear functional and find its norm.



My work :
$| f | = | sum (1-1/n) x_n |$



$leq sum | (1-1/n) | cdot | x_n |$



$<leq | x | sum (1-1/n)$



But what I can do after that?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
    $endgroup$
    – José Carlos Santos
    Dec 19 '18 at 13:42










  • $begingroup$
    use the triangle inequality
    $endgroup$
    – tonydo
    Dec 19 '18 at 13:45














0












0








0





$begingroup$


Let $f : l^{1} to {mathbb R}$ and



$f(x) = sum (1-1/n) x_n$



Where $x = (x_1, x_2 , ldots)$



Show that $f$ is a bounded linear functional and find its norm.



My work :
$| f | = | sum (1-1/n) x_n |$



$leq sum | (1-1/n) | cdot | x_n |$



$<leq | x | sum (1-1/n)$



But what I can do after that?










share|cite|improve this question











$endgroup$




Let $f : l^{1} to {mathbb R}$ and



$f(x) = sum (1-1/n) x_n$



Where $x = (x_1, x_2 , ldots)$



Show that $f$ is a bounded linear functional and find its norm.



My work :
$| f | = | sum (1-1/n) x_n |$



$leq sum | (1-1/n) | cdot | x_n |$



$<leq | x | sum (1-1/n)$



But what I can do after that?







functional-analysis norm






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 14:54









Namaste

1




1










asked Dec 19 '18 at 13:39









Duaa HamzehDuaa Hamzeh

524




524












  • $begingroup$
    Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
    $endgroup$
    – José Carlos Santos
    Dec 19 '18 at 13:42










  • $begingroup$
    use the triangle inequality
    $endgroup$
    – tonydo
    Dec 19 '18 at 13:45


















  • $begingroup$
    Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
    $endgroup$
    – José Carlos Santos
    Dec 19 '18 at 13:42










  • $begingroup$
    use the triangle inequality
    $endgroup$
    – tonydo
    Dec 19 '18 at 13:45
















$begingroup$
Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
$endgroup$
– José Carlos Santos
Dec 19 '18 at 13:42




$begingroup$
Since the series $sum_{n=1}^inftyleft(1-frac1nright)$ diverges, you did nothing.
$endgroup$
– José Carlos Santos
Dec 19 '18 at 13:42












$begingroup$
use the triangle inequality
$endgroup$
– tonydo
Dec 19 '18 at 13:45




$begingroup$
use the triangle inequality
$endgroup$
– tonydo
Dec 19 '18 at 13:45










2 Answers
2






active

oldest

votes


















1












$begingroup$

We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.



Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
      $endgroup$
      – postmortes
      Dec 19 '18 at 14:16











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046396%2fshow-that-f-is-a-bounded-linear-functional-and-find-its-norm%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.



    Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.



      Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.



        Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.






        share|cite|improve this answer









        $endgroup$



        We have $|f(x)| le sum_{n=1}^{infty}(1- frac{1}{n})|x_n| le sum_{n=1}^{infty}|x_n| = ||x||_1$.



        Hence $f$ is bounded and $||f|| le 1$. It is your turn to determine $||f||$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 19 '18 at 13:46









        FredFred

        48.6k11849




        48.6k11849























            0












            $begingroup$

            $xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
              $endgroup$
              – postmortes
              Dec 19 '18 at 14:16
















            0












            $begingroup$

            $xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
              $endgroup$
              – postmortes
              Dec 19 '18 at 14:16














            0












            0








            0





            $begingroup$

            $xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$






            share|cite|improve this answer









            $endgroup$



            $xin l^1Rightarrow |x|=sum |x_n|<infty.$ $|f(x)|leqsum (1-1/n)|x_n|leq sum |x_n|=|x|.$ So, $|f|leq 1.$ For $|f|=sup_{|x|leq 1}|f(x)|.$ Taking $x_i=0$ for $i=1(1)n$ with $|x|=1$ and $x_igeq 0$ we get $|f|geq |f(x)|=sum (1-1/i)x_igeq (1-1/n)|x|=1-1/n.$ So, $|f|=1.$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 19 '18 at 13:50









            John_WickJohn_Wick

            1,616111




            1,616111








            • 1




              $begingroup$
              Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
              $endgroup$
              – postmortes
              Dec 19 '18 at 14:16














            • 1




              $begingroup$
              Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
              $endgroup$
              – postmortes
              Dec 19 '18 at 14:16








            1




            1




            $begingroup$
            Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
            $endgroup$
            – postmortes
            Dec 19 '18 at 14:16




            $begingroup$
            Space is free :) Your answer would be a lot more readable if you moved distinct steps onto separate lines.
            $endgroup$
            – postmortes
            Dec 19 '18 at 14:16


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046396%2fshow-that-f-is-a-bounded-linear-functional-and-find-its-norm%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten