Find number of terms in arithmetic progression
$begingroup$
In a arithmetic progression sum of first four terms sum :
$$a_1+a_2+a_3+a_4=124$$
and sum of last four terms :
$$a_n+a_{n-1}+a_{n-2}+a_{n-3}=156$$
and sum of arithmetic progression is :
$$S_n=350$$
$$n=?$$
How to find $n$? I tried using arithmetic progression sum formulas but getting negative or fractional numbers.
sequences-and-series summation arithmetic-progressions
$endgroup$
add a comment |
$begingroup$
In a arithmetic progression sum of first four terms sum :
$$a_1+a_2+a_3+a_4=124$$
and sum of last four terms :
$$a_n+a_{n-1}+a_{n-2}+a_{n-3}=156$$
and sum of arithmetic progression is :
$$S_n=350$$
$$n=?$$
How to find $n$? I tried using arithmetic progression sum formulas but getting negative or fractional numbers.
sequences-and-series summation arithmetic-progressions
$endgroup$
add a comment |
$begingroup$
In a arithmetic progression sum of first four terms sum :
$$a_1+a_2+a_3+a_4=124$$
and sum of last four terms :
$$a_n+a_{n-1}+a_{n-2}+a_{n-3}=156$$
and sum of arithmetic progression is :
$$S_n=350$$
$$n=?$$
How to find $n$? I tried using arithmetic progression sum formulas but getting negative or fractional numbers.
sequences-and-series summation arithmetic-progressions
$endgroup$
In a arithmetic progression sum of first four terms sum :
$$a_1+a_2+a_3+a_4=124$$
and sum of last four terms :
$$a_n+a_{n-1}+a_{n-2}+a_{n-3}=156$$
and sum of arithmetic progression is :
$$S_n=350$$
$$n=?$$
How to find $n$? I tried using arithmetic progression sum formulas but getting negative or fractional numbers.
sequences-and-series summation arithmetic-progressions
sequences-and-series summation arithmetic-progressions
edited Dec 14 '18 at 16:19
Lord Shark the Unknown
105k1160133
105k1160133
asked Dec 14 '18 at 16:15
Serif YaohimSerif Yaohim
32
32
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
off $n$.
$endgroup$
$begingroup$
hohohoh man thank you a lot. God bless you
$endgroup$
– Serif Yaohim
Dec 14 '18 at 16:25
add a comment |
$begingroup$
Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$
$endgroup$
add a comment |
$begingroup$
$$350=dfrac{n(a_1+a_n)}2$$
Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$
$endgroup$
add a comment |
$begingroup$
Use standard formula of A.P.
which is
$a_n = a + (n-1)d$
and a simple difference formula
$a_n - a_{n-1} = d$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039559%2ffind-number-of-terms-in-arithmetic-progression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
off $n$.
$endgroup$
$begingroup$
hohohoh man thank you a lot. God bless you
$endgroup$
– Serif Yaohim
Dec 14 '18 at 16:25
add a comment |
$begingroup$
One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
off $n$.
$endgroup$
$begingroup$
hohohoh man thank you a lot. God bless you
$endgroup$
– Serif Yaohim
Dec 14 '18 at 16:25
add a comment |
$begingroup$
One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
off $n$.
$endgroup$
One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
off $n$.
answered Dec 14 '18 at 16:23
Lord Shark the UnknownLord Shark the Unknown
105k1160133
105k1160133
$begingroup$
hohohoh man thank you a lot. God bless you
$endgroup$
– Serif Yaohim
Dec 14 '18 at 16:25
add a comment |
$begingroup$
hohohoh man thank you a lot. God bless you
$endgroup$
– Serif Yaohim
Dec 14 '18 at 16:25
$begingroup$
hohohoh man thank you a lot. God bless you
$endgroup$
– Serif Yaohim
Dec 14 '18 at 16:25
$begingroup$
hohohoh man thank you a lot. God bless you
$endgroup$
– Serif Yaohim
Dec 14 '18 at 16:25
add a comment |
$begingroup$
Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$
$endgroup$
add a comment |
$begingroup$
Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$
$endgroup$
add a comment |
$begingroup$
Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$
$endgroup$
Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$
answered Dec 14 '18 at 16:17
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
76.8k42866
76.8k42866
add a comment |
add a comment |
$begingroup$
$$350=dfrac{n(a_1+a_n)}2$$
Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$
$endgroup$
add a comment |
$begingroup$
$$350=dfrac{n(a_1+a_n)}2$$
Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$
$endgroup$
add a comment |
$begingroup$
$$350=dfrac{n(a_1+a_n)}2$$
Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$
$endgroup$
$$350=dfrac{n(a_1+a_n)}2$$
Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$
edited Dec 14 '18 at 16:54
answered Dec 14 '18 at 16:28
lab bhattacharjeelab bhattacharjee
226k15157275
226k15157275
add a comment |
add a comment |
$begingroup$
Use standard formula of A.P.
which is
$a_n = a + (n-1)d$
and a simple difference formula
$a_n - a_{n-1} = d$
$endgroup$
add a comment |
$begingroup$
Use standard formula of A.P.
which is
$a_n = a + (n-1)d$
and a simple difference formula
$a_n - a_{n-1} = d$
$endgroup$
add a comment |
$begingroup$
Use standard formula of A.P.
which is
$a_n = a + (n-1)d$
and a simple difference formula
$a_n - a_{n-1} = d$
$endgroup$
Use standard formula of A.P.
which is
$a_n = a + (n-1)d$
and a simple difference formula
$a_n - a_{n-1} = d$
edited Dec 18 '18 at 19:46
Prakhar Nagpal
752318
752318
answered Dec 18 '18 at 19:32
user578581
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039559%2ffind-number-of-terms-in-arithmetic-progression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown