Use of Tonelli's Theorem to calculate $int_{[0,infty[} (int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (x))...












0












$begingroup$


Define $f: [0,infty[times [0,infty[ to bar{mathbb R}$, $f(x,y):= xe^{-x^{2}(1+y^{2})}$ it is clear that $f(x,y)geq 0$ $lambda-$a.e. Therefore, Tonelli's theorem holds. This means:



$int_{[0,infty[} (int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (x)) dlambda (y)=int_{[0,infty[} (int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)) dlambda (x)$



Looking exclusively at $int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)$, the only thing that comes to mind is "Riemann Integration", namely:



$int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)=lim_{nto infty}int_{[0,n]}xe^{-x^{2}(1+y^{2})}dy=lim_{nto infty}frac{1}{-xtimes2y}e^{-x^2(1+y^2)}vert_{0}^{n}$



Which gets me stuck as I have a $y$ in the denominator, however, I see no other way of doing it. Any other ideas?










share|cite|improve this question











$endgroup$












  • $begingroup$
    If you integrate over $y$ first, then it gives $frac{1}{2x}I$ where $I = int_{-infty}^infty e^{-t^2}dt$ is the Gaussian integral.
    $endgroup$
    – Song
    Dec 17 '18 at 20:51












  • $begingroup$
    Why $int^{infty}_{-infty}e^{-t^{2}}dt$ and not $int^{infty}_{0}e^{-t^{2}}dt$?
    $endgroup$
    – SABOY
    Dec 17 '18 at 21:03












  • $begingroup$
    The factor $1/2$ is in front. Typically Gaussian integral refers to the former.
    $endgroup$
    – Song
    Dec 17 '18 at 21:07
















0












$begingroup$


Define $f: [0,infty[times [0,infty[ to bar{mathbb R}$, $f(x,y):= xe^{-x^{2}(1+y^{2})}$ it is clear that $f(x,y)geq 0$ $lambda-$a.e. Therefore, Tonelli's theorem holds. This means:



$int_{[0,infty[} (int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (x)) dlambda (y)=int_{[0,infty[} (int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)) dlambda (x)$



Looking exclusively at $int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)$, the only thing that comes to mind is "Riemann Integration", namely:



$int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)=lim_{nto infty}int_{[0,n]}xe^{-x^{2}(1+y^{2})}dy=lim_{nto infty}frac{1}{-xtimes2y}e^{-x^2(1+y^2)}vert_{0}^{n}$



Which gets me stuck as I have a $y$ in the denominator, however, I see no other way of doing it. Any other ideas?










share|cite|improve this question











$endgroup$












  • $begingroup$
    If you integrate over $y$ first, then it gives $frac{1}{2x}I$ where $I = int_{-infty}^infty e^{-t^2}dt$ is the Gaussian integral.
    $endgroup$
    – Song
    Dec 17 '18 at 20:51












  • $begingroup$
    Why $int^{infty}_{-infty}e^{-t^{2}}dt$ and not $int^{infty}_{0}e^{-t^{2}}dt$?
    $endgroup$
    – SABOY
    Dec 17 '18 at 21:03












  • $begingroup$
    The factor $1/2$ is in front. Typically Gaussian integral refers to the former.
    $endgroup$
    – Song
    Dec 17 '18 at 21:07














0












0








0





$begingroup$


Define $f: [0,infty[times [0,infty[ to bar{mathbb R}$, $f(x,y):= xe^{-x^{2}(1+y^{2})}$ it is clear that $f(x,y)geq 0$ $lambda-$a.e. Therefore, Tonelli's theorem holds. This means:



$int_{[0,infty[} (int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (x)) dlambda (y)=int_{[0,infty[} (int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)) dlambda (x)$



Looking exclusively at $int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)$, the only thing that comes to mind is "Riemann Integration", namely:



$int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)=lim_{nto infty}int_{[0,n]}xe^{-x^{2}(1+y^{2})}dy=lim_{nto infty}frac{1}{-xtimes2y}e^{-x^2(1+y^2)}vert_{0}^{n}$



Which gets me stuck as I have a $y$ in the denominator, however, I see no other way of doing it. Any other ideas?










share|cite|improve this question











$endgroup$




Define $f: [0,infty[times [0,infty[ to bar{mathbb R}$, $f(x,y):= xe^{-x^{2}(1+y^{2})}$ it is clear that $f(x,y)geq 0$ $lambda-$a.e. Therefore, Tonelli's theorem holds. This means:



$int_{[0,infty[} (int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (x)) dlambda (y)=int_{[0,infty[} (int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)) dlambda (x)$



Looking exclusively at $int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)$, the only thing that comes to mind is "Riemann Integration", namely:



$int_{[0,infty[}xe^{-x^{2}(1+y^{2})}dlambda (y)=lim_{nto infty}int_{[0,n]}xe^{-x^{2}(1+y^{2})}dy=lim_{nto infty}frac{1}{-xtimes2y}e^{-x^2(1+y^2)}vert_{0}^{n}$



Which gets me stuck as I have a $y$ in the denominator, however, I see no other way of doing it. Any other ideas?







real-analysis integration measure-theory multivariable-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 20:38







SABOY

















asked Dec 17 '18 at 20:21









SABOYSABOY

656311




656311












  • $begingroup$
    If you integrate over $y$ first, then it gives $frac{1}{2x}I$ where $I = int_{-infty}^infty e^{-t^2}dt$ is the Gaussian integral.
    $endgroup$
    – Song
    Dec 17 '18 at 20:51












  • $begingroup$
    Why $int^{infty}_{-infty}e^{-t^{2}}dt$ and not $int^{infty}_{0}e^{-t^{2}}dt$?
    $endgroup$
    – SABOY
    Dec 17 '18 at 21:03












  • $begingroup$
    The factor $1/2$ is in front. Typically Gaussian integral refers to the former.
    $endgroup$
    – Song
    Dec 17 '18 at 21:07


















  • $begingroup$
    If you integrate over $y$ first, then it gives $frac{1}{2x}I$ where $I = int_{-infty}^infty e^{-t^2}dt$ is the Gaussian integral.
    $endgroup$
    – Song
    Dec 17 '18 at 20:51












  • $begingroup$
    Why $int^{infty}_{-infty}e^{-t^{2}}dt$ and not $int^{infty}_{0}e^{-t^{2}}dt$?
    $endgroup$
    – SABOY
    Dec 17 '18 at 21:03












  • $begingroup$
    The factor $1/2$ is in front. Typically Gaussian integral refers to the former.
    $endgroup$
    – Song
    Dec 17 '18 at 21:07
















$begingroup$
If you integrate over $y$ first, then it gives $frac{1}{2x}I$ where $I = int_{-infty}^infty e^{-t^2}dt$ is the Gaussian integral.
$endgroup$
– Song
Dec 17 '18 at 20:51






$begingroup$
If you integrate over $y$ first, then it gives $frac{1}{2x}I$ where $I = int_{-infty}^infty e^{-t^2}dt$ is the Gaussian integral.
$endgroup$
– Song
Dec 17 '18 at 20:51














$begingroup$
Why $int^{infty}_{-infty}e^{-t^{2}}dt$ and not $int^{infty}_{0}e^{-t^{2}}dt$?
$endgroup$
– SABOY
Dec 17 '18 at 21:03






$begingroup$
Why $int^{infty}_{-infty}e^{-t^{2}}dt$ and not $int^{infty}_{0}e^{-t^{2}}dt$?
$endgroup$
– SABOY
Dec 17 '18 at 21:03














$begingroup$
The factor $1/2$ is in front. Typically Gaussian integral refers to the former.
$endgroup$
– Song
Dec 17 '18 at 21:07




$begingroup$
The factor $1/2$ is in front. Typically Gaussian integral refers to the former.
$endgroup$
– Song
Dec 17 '18 at 21:07










1 Answer
1






active

oldest

votes


















2












$begingroup$

Since the Lebesgue integral agrees with the Riemann integral if we have absolutely Riemann-integrable functions we can first integrate with respect to $x$ to get:



$$int_{0}^{infty}xe^{-x^2(1+y^2)}dlambda(x) = frac{-1}{2}frac{e^{-x^2(1+y^2)}}{1+y^2}Bigvert_{0}^{infty} = frac{1}{2}frac{1}{1+y^2}.$$



Now integrate



$$frac{1}{2}int_{0}^{infty}frac{1}{1+y^2}dlambda(y)$$



NOTE: A primitive for $xe^{-x^2(1+y^2)}$ with respect to $y$ is not given by $frac{1}{-x^2cdot 2y}e^{-xy^2}$! Rather



$$frac{1}{x}frac{d}{dy}frac{1}{2y}e^{-x^2y^2} = frac{1}{x}cdotfrac{-2yx^2e^{-x^2y^2}(2y)-2e^{-x^2y^2}}{4y^2}=-xe^{-x^2y^2}-frac{e^{-x^2y^2}}{2xy^2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How can this help me find $int_{[0,infty[}e^{-t^{2}}d lambda (t)$ ?
    $endgroup$
    – SABOY
    Dec 17 '18 at 20:43










  • $begingroup$
    Is that what you are trying to do?
    $endgroup$
    – Olof Rubin
    Dec 17 '18 at 20:44










  • $begingroup$
    Yes, that is why I needed to use Tonelli, to switch integrals, and integrate with respect to $y$
    $endgroup$
    – SABOY
    Dec 17 '18 at 21:06













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044394%2fuse-of-tonellis-theorem-to-calculate-int-0-infty-int-0-inftyxe%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Since the Lebesgue integral agrees with the Riemann integral if we have absolutely Riemann-integrable functions we can first integrate with respect to $x$ to get:



$$int_{0}^{infty}xe^{-x^2(1+y^2)}dlambda(x) = frac{-1}{2}frac{e^{-x^2(1+y^2)}}{1+y^2}Bigvert_{0}^{infty} = frac{1}{2}frac{1}{1+y^2}.$$



Now integrate



$$frac{1}{2}int_{0}^{infty}frac{1}{1+y^2}dlambda(y)$$



NOTE: A primitive for $xe^{-x^2(1+y^2)}$ with respect to $y$ is not given by $frac{1}{-x^2cdot 2y}e^{-xy^2}$! Rather



$$frac{1}{x}frac{d}{dy}frac{1}{2y}e^{-x^2y^2} = frac{1}{x}cdotfrac{-2yx^2e^{-x^2y^2}(2y)-2e^{-x^2y^2}}{4y^2}=-xe^{-x^2y^2}-frac{e^{-x^2y^2}}{2xy^2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How can this help me find $int_{[0,infty[}e^{-t^{2}}d lambda (t)$ ?
    $endgroup$
    – SABOY
    Dec 17 '18 at 20:43










  • $begingroup$
    Is that what you are trying to do?
    $endgroup$
    – Olof Rubin
    Dec 17 '18 at 20:44










  • $begingroup$
    Yes, that is why I needed to use Tonelli, to switch integrals, and integrate with respect to $y$
    $endgroup$
    – SABOY
    Dec 17 '18 at 21:06


















2












$begingroup$

Since the Lebesgue integral agrees with the Riemann integral if we have absolutely Riemann-integrable functions we can first integrate with respect to $x$ to get:



$$int_{0}^{infty}xe^{-x^2(1+y^2)}dlambda(x) = frac{-1}{2}frac{e^{-x^2(1+y^2)}}{1+y^2}Bigvert_{0}^{infty} = frac{1}{2}frac{1}{1+y^2}.$$



Now integrate



$$frac{1}{2}int_{0}^{infty}frac{1}{1+y^2}dlambda(y)$$



NOTE: A primitive for $xe^{-x^2(1+y^2)}$ with respect to $y$ is not given by $frac{1}{-x^2cdot 2y}e^{-xy^2}$! Rather



$$frac{1}{x}frac{d}{dy}frac{1}{2y}e^{-x^2y^2} = frac{1}{x}cdotfrac{-2yx^2e^{-x^2y^2}(2y)-2e^{-x^2y^2}}{4y^2}=-xe^{-x^2y^2}-frac{e^{-x^2y^2}}{2xy^2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How can this help me find $int_{[0,infty[}e^{-t^{2}}d lambda (t)$ ?
    $endgroup$
    – SABOY
    Dec 17 '18 at 20:43










  • $begingroup$
    Is that what you are trying to do?
    $endgroup$
    – Olof Rubin
    Dec 17 '18 at 20:44










  • $begingroup$
    Yes, that is why I needed to use Tonelli, to switch integrals, and integrate with respect to $y$
    $endgroup$
    – SABOY
    Dec 17 '18 at 21:06
















2












2








2





$begingroup$

Since the Lebesgue integral agrees with the Riemann integral if we have absolutely Riemann-integrable functions we can first integrate with respect to $x$ to get:



$$int_{0}^{infty}xe^{-x^2(1+y^2)}dlambda(x) = frac{-1}{2}frac{e^{-x^2(1+y^2)}}{1+y^2}Bigvert_{0}^{infty} = frac{1}{2}frac{1}{1+y^2}.$$



Now integrate



$$frac{1}{2}int_{0}^{infty}frac{1}{1+y^2}dlambda(y)$$



NOTE: A primitive for $xe^{-x^2(1+y^2)}$ with respect to $y$ is not given by $frac{1}{-x^2cdot 2y}e^{-xy^2}$! Rather



$$frac{1}{x}frac{d}{dy}frac{1}{2y}e^{-x^2y^2} = frac{1}{x}cdotfrac{-2yx^2e^{-x^2y^2}(2y)-2e^{-x^2y^2}}{4y^2}=-xe^{-x^2y^2}-frac{e^{-x^2y^2}}{2xy^2}$$






share|cite|improve this answer











$endgroup$



Since the Lebesgue integral agrees with the Riemann integral if we have absolutely Riemann-integrable functions we can first integrate with respect to $x$ to get:



$$int_{0}^{infty}xe^{-x^2(1+y^2)}dlambda(x) = frac{-1}{2}frac{e^{-x^2(1+y^2)}}{1+y^2}Bigvert_{0}^{infty} = frac{1}{2}frac{1}{1+y^2}.$$



Now integrate



$$frac{1}{2}int_{0}^{infty}frac{1}{1+y^2}dlambda(y)$$



NOTE: A primitive for $xe^{-x^2(1+y^2)}$ with respect to $y$ is not given by $frac{1}{-x^2cdot 2y}e^{-xy^2}$! Rather



$$frac{1}{x}frac{d}{dy}frac{1}{2y}e^{-x^2y^2} = frac{1}{x}cdotfrac{-2yx^2e^{-x^2y^2}(2y)-2e^{-x^2y^2}}{4y^2}=-xe^{-x^2y^2}-frac{e^{-x^2y^2}}{2xy^2}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 17 '18 at 20:45

























answered Dec 17 '18 at 20:29









Olof RubinOlof Rubin

877317




877317












  • $begingroup$
    How can this help me find $int_{[0,infty[}e^{-t^{2}}d lambda (t)$ ?
    $endgroup$
    – SABOY
    Dec 17 '18 at 20:43










  • $begingroup$
    Is that what you are trying to do?
    $endgroup$
    – Olof Rubin
    Dec 17 '18 at 20:44










  • $begingroup$
    Yes, that is why I needed to use Tonelli, to switch integrals, and integrate with respect to $y$
    $endgroup$
    – SABOY
    Dec 17 '18 at 21:06




















  • $begingroup$
    How can this help me find $int_{[0,infty[}e^{-t^{2}}d lambda (t)$ ?
    $endgroup$
    – SABOY
    Dec 17 '18 at 20:43










  • $begingroup$
    Is that what you are trying to do?
    $endgroup$
    – Olof Rubin
    Dec 17 '18 at 20:44










  • $begingroup$
    Yes, that is why I needed to use Tonelli, to switch integrals, and integrate with respect to $y$
    $endgroup$
    – SABOY
    Dec 17 '18 at 21:06


















$begingroup$
How can this help me find $int_{[0,infty[}e^{-t^{2}}d lambda (t)$ ?
$endgroup$
– SABOY
Dec 17 '18 at 20:43




$begingroup$
How can this help me find $int_{[0,infty[}e^{-t^{2}}d lambda (t)$ ?
$endgroup$
– SABOY
Dec 17 '18 at 20:43












$begingroup$
Is that what you are trying to do?
$endgroup$
– Olof Rubin
Dec 17 '18 at 20:44




$begingroup$
Is that what you are trying to do?
$endgroup$
– Olof Rubin
Dec 17 '18 at 20:44












$begingroup$
Yes, that is why I needed to use Tonelli, to switch integrals, and integrate with respect to $y$
$endgroup$
– SABOY
Dec 17 '18 at 21:06






$begingroup$
Yes, that is why I needed to use Tonelli, to switch integrals, and integrate with respect to $y$
$endgroup$
– SABOY
Dec 17 '18 at 21:06




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044394%2fuse-of-tonellis-theorem-to-calculate-int-0-infty-int-0-inftyxe%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten