Diagonal entries are zero, others are $1$. Find the determinant. [duplicate]
$begingroup$
This question already has an answer here:
How to calculate the following determinants (all ones, minus $I$)
8 answers
induction proof of a determinant $n times n$
2 answers
$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=?$
Attempt:
First I tried to use linearity property of the determinants such that $$detbinom{ v+ku }{ w
}=detbinom{v }{ w
}+kdet binom{ u }{ w
}$$
$v,u,w$ are vectors $k$ is scalar.
I have tried to divide it into $n$ parts and tried to compose with sense but didn't acomplish.
Second I tried to make use of "Row Reduction" i.e. adding scalar multiple of some row to another does not change the determinant, so I added the all different rows into other i.e. adding $2, 3,4,dots,n$th row to first row and similarly doing for all rows we got
$$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detbegin{vmatrix}
n-1 & cdots & n-1& n-1 & n-1 \
vdots & ddots & vdots & vdots & vdots \
n-1 & cdots & n-1 & n-1 & n-1
end{vmatrix}=0$$
The last determinant is zero (I guess) so the given determinant is zero?
I don't have the answer this question, so I am not sure. How to calculate this determinant?
linear-algebra determinant
$endgroup$
marked as duplicate by Martin R, Michael Hoppe, Martin Sleziak, Xander Henderson, Did Dec 27 '18 at 17:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
How to calculate the following determinants (all ones, minus $I$)
8 answers
induction proof of a determinant $n times n$
2 answers
$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=?$
Attempt:
First I tried to use linearity property of the determinants such that $$detbinom{ v+ku }{ w
}=detbinom{v }{ w
}+kdet binom{ u }{ w
}$$
$v,u,w$ are vectors $k$ is scalar.
I have tried to divide it into $n$ parts and tried to compose with sense but didn't acomplish.
Second I tried to make use of "Row Reduction" i.e. adding scalar multiple of some row to another does not change the determinant, so I added the all different rows into other i.e. adding $2, 3,4,dots,n$th row to first row and similarly doing for all rows we got
$$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detbegin{vmatrix}
n-1 & cdots & n-1& n-1 & n-1 \
vdots & ddots & vdots & vdots & vdots \
n-1 & cdots & n-1 & n-1 & n-1
end{vmatrix}=0$$
The last determinant is zero (I guess) so the given determinant is zero?
I don't have the answer this question, so I am not sure. How to calculate this determinant?
linear-algebra determinant
$endgroup$
marked as duplicate by Martin R, Michael Hoppe, Martin Sleziak, Xander Henderson, Did Dec 27 '18 at 17:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
$endgroup$
– José Carlos Santos
Dec 25 '18 at 10:53
2
$begingroup$
Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
$endgroup$
– Martin R
Dec 25 '18 at 10:57
2
$begingroup$
Another one: math.stackexchange.com/q/1312849/42969
$endgroup$
– Martin R
Dec 25 '18 at 11:00
$begingroup$
Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
$endgroup$
– Martin R
Dec 27 '18 at 9:49
add a comment |
$begingroup$
This question already has an answer here:
How to calculate the following determinants (all ones, minus $I$)
8 answers
induction proof of a determinant $n times n$
2 answers
$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=?$
Attempt:
First I tried to use linearity property of the determinants such that $$detbinom{ v+ku }{ w
}=detbinom{v }{ w
}+kdet binom{ u }{ w
}$$
$v,u,w$ are vectors $k$ is scalar.
I have tried to divide it into $n$ parts and tried to compose with sense but didn't acomplish.
Second I tried to make use of "Row Reduction" i.e. adding scalar multiple of some row to another does not change the determinant, so I added the all different rows into other i.e. adding $2, 3,4,dots,n$th row to first row and similarly doing for all rows we got
$$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detbegin{vmatrix}
n-1 & cdots & n-1& n-1 & n-1 \
vdots & ddots & vdots & vdots & vdots \
n-1 & cdots & n-1 & n-1 & n-1
end{vmatrix}=0$$
The last determinant is zero (I guess) so the given determinant is zero?
I don't have the answer this question, so I am not sure. How to calculate this determinant?
linear-algebra determinant
$endgroup$
This question already has an answer here:
How to calculate the following determinants (all ones, minus $I$)
8 answers
induction proof of a determinant $n times n$
2 answers
$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=?$
Attempt:
First I tried to use linearity property of the determinants such that $$detbinom{ v+ku }{ w
}=detbinom{v }{ w
}+kdet binom{ u }{ w
}$$
$v,u,w$ are vectors $k$ is scalar.
I have tried to divide it into $n$ parts and tried to compose with sense but didn't acomplish.
Second I tried to make use of "Row Reduction" i.e. adding scalar multiple of some row to another does not change the determinant, so I added the all different rows into other i.e. adding $2, 3,4,dots,n$th row to first row and similarly doing for all rows we got
$$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detbegin{vmatrix}
n-1 & cdots & n-1& n-1 & n-1 \
vdots & ddots & vdots & vdots & vdots \
n-1 & cdots & n-1 & n-1 & n-1
end{vmatrix}=0$$
The last determinant is zero (I guess) so the given determinant is zero?
I don't have the answer this question, so I am not sure. How to calculate this determinant?
This question already has an answer here:
How to calculate the following determinants (all ones, minus $I$)
8 answers
induction proof of a determinant $n times n$
2 answers
linear-algebra determinant
linear-algebra determinant
edited Dec 25 '18 at 10:54
N. F. Taussig
45.1k103358
45.1k103358
asked Dec 25 '18 at 10:37
Jalede Jale uff Ne jaleJalede Jale uff Ne jale
212
212
marked as duplicate by Martin R, Michael Hoppe, Martin Sleziak, Xander Henderson, Did Dec 27 '18 at 17:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Martin R, Michael Hoppe, Martin Sleziak, Xander Henderson, Did Dec 27 '18 at 17:16
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
$endgroup$
– José Carlos Santos
Dec 25 '18 at 10:53
2
$begingroup$
Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
$endgroup$
– Martin R
Dec 25 '18 at 10:57
2
$begingroup$
Another one: math.stackexchange.com/q/1312849/42969
$endgroup$
– Martin R
Dec 25 '18 at 11:00
$begingroup$
Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
$endgroup$
– Martin R
Dec 27 '18 at 9:49
add a comment |
1
$begingroup$
Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
$endgroup$
– José Carlos Santos
Dec 25 '18 at 10:53
2
$begingroup$
Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
$endgroup$
– Martin R
Dec 25 '18 at 10:57
2
$begingroup$
Another one: math.stackexchange.com/q/1312849/42969
$endgroup$
– Martin R
Dec 25 '18 at 11:00
$begingroup$
Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
$endgroup$
– Martin R
Dec 27 '18 at 9:49
1
1
$begingroup$
Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
$endgroup$
– José Carlos Santos
Dec 25 '18 at 10:53
$begingroup$
Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
$endgroup$
– José Carlos Santos
Dec 25 '18 at 10:53
2
2
$begingroup$
Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
$endgroup$
– Martin R
Dec 25 '18 at 10:57
$begingroup$
Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
$endgroup$
– Martin R
Dec 25 '18 at 10:57
2
2
$begingroup$
Another one: math.stackexchange.com/q/1312849/42969
$endgroup$
– Martin R
Dec 25 '18 at 11:00
$begingroup$
Another one: math.stackexchange.com/q/1312849/42969
$endgroup$
– Martin R
Dec 25 '18 at 11:00
$begingroup$
Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
$endgroup$
– Martin R
Dec 27 '18 at 9:49
$begingroup$
Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
$endgroup$
– Martin R
Dec 27 '18 at 9:49
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$det A_n=begin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detleft(begin{pmatrix}
1 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 1
end{pmatrix}-I_nright)=det(B_n-I_n)$$
Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.
$endgroup$
add a comment |
$begingroup$
Notice that
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix}$$
$$vdots $$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix}$$
All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.
Therefore the determinant is $(-1)^{n-1}(n-1)$.
$endgroup$
add a comment |
$begingroup$
For $n = 1$, we have
$$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$
For $n=2$, we have
$$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$
For $n = 3$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$
For $n = 4$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$
For $n = 5$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$
So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
$$ det A = (-1)^{n-1} (n-1). $$
Hope this helps.
For calculation of determinants, I've used this online tool.
$endgroup$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$det A_n=begin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detleft(begin{pmatrix}
1 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 1
end{pmatrix}-I_nright)=det(B_n-I_n)$$
Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.
$endgroup$
add a comment |
$begingroup$
$$det A_n=begin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detleft(begin{pmatrix}
1 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 1
end{pmatrix}-I_nright)=det(B_n-I_n)$$
Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.
$endgroup$
add a comment |
$begingroup$
$$det A_n=begin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detleft(begin{pmatrix}
1 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 1
end{pmatrix}-I_nright)=det(B_n-I_n)$$
Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.
$endgroup$
$$det A_n=begin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detleft(begin{pmatrix}
1 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 1
end{pmatrix}-I_nright)=det(B_n-I_n)$$
Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.
edited Dec 25 '18 at 11:32
answered Dec 25 '18 at 11:05
SinTan1729SinTan1729
2,682723
2,682723
add a comment |
add a comment |
$begingroup$
Notice that
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix}$$
$$vdots $$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix}$$
All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.
Therefore the determinant is $(-1)^{n-1}(n-1)$.
$endgroup$
add a comment |
$begingroup$
Notice that
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix}$$
$$vdots $$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix}$$
All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.
Therefore the determinant is $(-1)^{n-1}(n-1)$.
$endgroup$
add a comment |
$begingroup$
Notice that
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix}$$
$$vdots $$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix}$$
All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.
Therefore the determinant is $(-1)^{n-1}(n-1)$.
$endgroup$
Notice that
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
end{bmatrix}$$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
end{bmatrix}$$
$$vdots $$
$$begin{bmatrix} 0 & 1 & cdots & 1\
1 & 0 & cdots & 1\
vdots & vdots & ddots & vdots\
1 & 1 &cdots & 0
end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
end{bmatrix}$$
All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.
Therefore the determinant is $(-1)^{n-1}(n-1)$.
answered Dec 25 '18 at 11:19
mechanodroidmechanodroid
28.9k62648
28.9k62648
add a comment |
add a comment |
$begingroup$
For $n = 1$, we have
$$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$
For $n=2$, we have
$$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$
For $n = 3$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$
For $n = 4$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$
For $n = 5$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$
So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
$$ det A = (-1)^{n-1} (n-1). $$
Hope this helps.
For calculation of determinants, I've used this online tool.
$endgroup$
add a comment |
$begingroup$
For $n = 1$, we have
$$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$
For $n=2$, we have
$$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$
For $n = 3$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$
For $n = 4$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$
For $n = 5$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$
So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
$$ det A = (-1)^{n-1} (n-1). $$
Hope this helps.
For calculation of determinants, I've used this online tool.
$endgroup$
add a comment |
$begingroup$
For $n = 1$, we have
$$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$
For $n=2$, we have
$$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$
For $n = 3$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$
For $n = 4$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$
For $n = 5$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$
So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
$$ det A = (-1)^{n-1} (n-1). $$
Hope this helps.
For calculation of determinants, I've used this online tool.
$endgroup$
For $n = 1$, we have
$$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$
For $n=2$, we have
$$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$
For $n = 3$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$
For $n = 4$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$
For $n = 5$, we have
$$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$
So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
$$ det A = (-1)^{n-1} (n-1). $$
Hope this helps.
For calculation of determinants, I've used this online tool.
answered Dec 25 '18 at 11:53
Saaqib MahmoodSaaqib Mahmood
7,91842581
7,91842581
add a comment |
add a comment |
1
$begingroup$
Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
$endgroup$
– José Carlos Santos
Dec 25 '18 at 10:53
2
$begingroup$
Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
$endgroup$
– Martin R
Dec 25 '18 at 10:57
2
$begingroup$
Another one: math.stackexchange.com/q/1312849/42969
$endgroup$
– Martin R
Dec 25 '18 at 11:00
$begingroup$
Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
$endgroup$
– Martin R
Dec 27 '18 at 9:49