Diagonal entries are zero, others are $1$. Find the determinant. [duplicate]












3












$begingroup$



This question already has an answer here:




  • How to calculate the following determinants (all ones, minus $I$)

    8 answers



  • induction proof of a determinant $n times n$

    2 answers




$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=?$



Attempt:



First I tried to use linearity property of the determinants such that $$detbinom{ v+ku }{ w
}=detbinom{v }{ w
}+kdet binom{ u }{ w
}$$



$v,u,w$ are vectors $k$ is scalar.



I have tried to divide it into $n$ parts and tried to compose with sense but didn't acomplish.



Second I tried to make use of "Row Reduction" i.e. adding scalar multiple of some row to another does not change the determinant, so I added the all different rows into other i.e. adding $2, 3,4,dots,n$th row to first row and similarly doing for all rows we got



$$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detbegin{vmatrix}
n-1 & cdots & n-1& n-1 & n-1 \
vdots & ddots & vdots & vdots & vdots \
n-1 & cdots & n-1 & n-1 & n-1
end{vmatrix}=0$$



The last determinant is zero (I guess) so the given determinant is zero?



I don't have the answer this question, so I am not sure. How to calculate this determinant?










share|cite|improve this question











$endgroup$



marked as duplicate by Martin R, Michael Hoppe, Martin Sleziak, Xander Henderson, Did Dec 27 '18 at 17:16


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1




    $begingroup$
    Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
    $endgroup$
    – José Carlos Santos
    Dec 25 '18 at 10:53






  • 2




    $begingroup$
    Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
    $endgroup$
    – Martin R
    Dec 25 '18 at 10:57








  • 2




    $begingroup$
    Another one: math.stackexchange.com/q/1312849/42969
    $endgroup$
    – Martin R
    Dec 25 '18 at 11:00










  • $begingroup$
    Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
    $endgroup$
    – Martin R
    Dec 27 '18 at 9:49


















3












$begingroup$



This question already has an answer here:




  • How to calculate the following determinants (all ones, minus $I$)

    8 answers



  • induction proof of a determinant $n times n$

    2 answers




$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=?$



Attempt:



First I tried to use linearity property of the determinants such that $$detbinom{ v+ku }{ w
}=detbinom{v }{ w
}+kdet binom{ u }{ w
}$$



$v,u,w$ are vectors $k$ is scalar.



I have tried to divide it into $n$ parts and tried to compose with sense but didn't acomplish.



Second I tried to make use of "Row Reduction" i.e. adding scalar multiple of some row to another does not change the determinant, so I added the all different rows into other i.e. adding $2, 3,4,dots,n$th row to first row and similarly doing for all rows we got



$$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detbegin{vmatrix}
n-1 & cdots & n-1& n-1 & n-1 \
vdots & ddots & vdots & vdots & vdots \
n-1 & cdots & n-1 & n-1 & n-1
end{vmatrix}=0$$



The last determinant is zero (I guess) so the given determinant is zero?



I don't have the answer this question, so I am not sure. How to calculate this determinant?










share|cite|improve this question











$endgroup$



marked as duplicate by Martin R, Michael Hoppe, Martin Sleziak, Xander Henderson, Did Dec 27 '18 at 17:16


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1




    $begingroup$
    Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
    $endgroup$
    – José Carlos Santos
    Dec 25 '18 at 10:53






  • 2




    $begingroup$
    Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
    $endgroup$
    – Martin R
    Dec 25 '18 at 10:57








  • 2




    $begingroup$
    Another one: math.stackexchange.com/q/1312849/42969
    $endgroup$
    – Martin R
    Dec 25 '18 at 11:00










  • $begingroup$
    Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
    $endgroup$
    – Martin R
    Dec 27 '18 at 9:49
















3












3








3


1



$begingroup$



This question already has an answer here:




  • How to calculate the following determinants (all ones, minus $I$)

    8 answers



  • induction proof of a determinant $n times n$

    2 answers




$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=?$



Attempt:



First I tried to use linearity property of the determinants such that $$detbinom{ v+ku }{ w
}=detbinom{v }{ w
}+kdet binom{ u }{ w
}$$



$v,u,w$ are vectors $k$ is scalar.



I have tried to divide it into $n$ parts and tried to compose with sense but didn't acomplish.



Second I tried to make use of "Row Reduction" i.e. adding scalar multiple of some row to another does not change the determinant, so I added the all different rows into other i.e. adding $2, 3,4,dots,n$th row to first row and similarly doing for all rows we got



$$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detbegin{vmatrix}
n-1 & cdots & n-1& n-1 & n-1 \
vdots & ddots & vdots & vdots & vdots \
n-1 & cdots & n-1 & n-1 & n-1
end{vmatrix}=0$$



The last determinant is zero (I guess) so the given determinant is zero?



I don't have the answer this question, so I am not sure. How to calculate this determinant?










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • How to calculate the following determinants (all ones, minus $I$)

    8 answers



  • induction proof of a determinant $n times n$

    2 answers




$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=?$



Attempt:



First I tried to use linearity property of the determinants such that $$detbinom{ v+ku }{ w
}=detbinom{v }{ w
}+kdet binom{ u }{ w
}$$



$v,u,w$ are vectors $k$ is scalar.



I have tried to divide it into $n$ parts and tried to compose with sense but didn't acomplish.



Second I tried to make use of "Row Reduction" i.e. adding scalar multiple of some row to another does not change the determinant, so I added the all different rows into other i.e. adding $2, 3,4,dots,n$th row to first row and similarly doing for all rows we got



$$detbegin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detbegin{vmatrix}
n-1 & cdots & n-1& n-1 & n-1 \
vdots & ddots & vdots & vdots & vdots \
n-1 & cdots & n-1 & n-1 & n-1
end{vmatrix}=0$$



The last determinant is zero (I guess) so the given determinant is zero?



I don't have the answer this question, so I am not sure. How to calculate this determinant?





This question already has an answer here:




  • How to calculate the following determinants (all ones, minus $I$)

    8 answers



  • induction proof of a determinant $n times n$

    2 answers








linear-algebra determinant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 25 '18 at 10:54









N. F. Taussig

45.1k103358




45.1k103358










asked Dec 25 '18 at 10:37









Jalede Jale uff Ne jaleJalede Jale uff Ne jale

212




212




marked as duplicate by Martin R, Michael Hoppe, Martin Sleziak, Xander Henderson, Did Dec 27 '18 at 17:16


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Martin R, Michael Hoppe, Martin Sleziak, Xander Henderson, Did Dec 27 '18 at 17:16


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1




    $begingroup$
    Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
    $endgroup$
    – José Carlos Santos
    Dec 25 '18 at 10:53






  • 2




    $begingroup$
    Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
    $endgroup$
    – Martin R
    Dec 25 '18 at 10:57








  • 2




    $begingroup$
    Another one: math.stackexchange.com/q/1312849/42969
    $endgroup$
    – Martin R
    Dec 25 '18 at 11:00










  • $begingroup$
    Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
    $endgroup$
    – Martin R
    Dec 27 '18 at 9:49
















  • 1




    $begingroup$
    Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
    $endgroup$
    – José Carlos Santos
    Dec 25 '18 at 10:53






  • 2




    $begingroup$
    Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
    $endgroup$
    – Martin R
    Dec 25 '18 at 10:57








  • 2




    $begingroup$
    Another one: math.stackexchange.com/q/1312849/42969
    $endgroup$
    – Martin R
    Dec 25 '18 at 11:00










  • $begingroup$
    Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
    $endgroup$
    – Martin R
    Dec 27 '18 at 9:49










1




1




$begingroup$
Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
$endgroup$
– José Carlos Santos
Dec 25 '18 at 10:53




$begingroup$
Ae you talking about the square matrix with $0$'s on the main diagonal an $1$'s elsewhere?
$endgroup$
– José Carlos Santos
Dec 25 '18 at 10:53




2




2




$begingroup$
Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
$endgroup$
– Martin R
Dec 25 '18 at 10:57






$begingroup$
Also a special case of math.stackexchange.com/q/2162351/42969 or generally, of Sylvester's determinant identity math.stackexchange.com/q/17831/42969
$endgroup$
– Martin R
Dec 25 '18 at 10:57






2




2




$begingroup$
Another one: math.stackexchange.com/q/1312849/42969
$endgroup$
– Martin R
Dec 25 '18 at 11:00




$begingroup$
Another one: math.stackexchange.com/q/1312849/42969
$endgroup$
– Martin R
Dec 25 '18 at 11:00












$begingroup$
Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
$endgroup$
– Martin R
Dec 27 '18 at 9:49






$begingroup$
Also: math.stackexchange.com/q/81016/42969, math.stackexchange.com/q/84206/42969
$endgroup$
– Martin R
Dec 27 '18 at 9:49












3 Answers
3






active

oldest

votes


















5












$begingroup$

$$det A_n=begin{vmatrix}
0 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 0
end{vmatrix}=detleft(begin{pmatrix}
1 & cdots & 1& 1 & 1 \
vdots & ddots & vdots & vdots & vdots \
1 & cdots & 1 & 1 & 1
end{pmatrix}-I_nright)=det(B_n-I_n)$$

Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.






share|cite|improve this answer











$endgroup$





















    3












    $begingroup$

    Notice that



    $$begin{bmatrix} 0 & 1 & cdots & 1\
    1 & 0 & cdots & 1\
    vdots & vdots & ddots & vdots\
    1 & 1 &cdots & 0
    end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
    end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
    end{bmatrix}$$



    $$begin{bmatrix} 0 & 1 & cdots & 1\
    1 & 0 & cdots & 1\
    vdots & vdots & ddots & vdots\
    1 & 1 &cdots & 0
    end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
    end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
    end{bmatrix}$$

    $$begin{bmatrix} 0 & 1 & cdots & 1\
    1 & 0 & cdots & 1\
    vdots & vdots & ddots & vdots\
    1 & 1 &cdots & 0
    end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
    end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
    end{bmatrix}$$

    $$vdots $$
    $$begin{bmatrix} 0 & 1 & cdots & 1\
    1 & 0 & cdots & 1\
    vdots & vdots & ddots & vdots\
    1 & 1 &cdots & 0
    end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
    end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
    end{bmatrix}$$



    All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.



    Therefore the determinant is $(-1)^{n-1}(n-1)$.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      For $n = 1$, we have
      $$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$



      For $n=2$, we have
      $$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$



      For $n = 3$, we have
      $$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$



      For $n = 4$, we have
      $$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$



      For $n = 5$, we have
      $$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$



      So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
      $$ det A = (-1)^{n-1} (n-1). $$



      Hope this helps.



      For calculation of determinants, I've used this online tool.






      share|cite|improve this answer









      $endgroup$




















        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        $$det A_n=begin{vmatrix}
        0 & cdots & 1& 1 & 1 \
        vdots & ddots & vdots & vdots & vdots \
        1 & cdots & 1 & 1 & 0
        end{vmatrix}=detleft(begin{pmatrix}
        1 & cdots & 1& 1 & 1 \
        vdots & ddots & vdots & vdots & vdots \
        1 & cdots & 1 & 1 & 1
        end{pmatrix}-I_nright)=det(B_n-I_n)$$

        Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.






        share|cite|improve this answer











        $endgroup$


















          5












          $begingroup$

          $$det A_n=begin{vmatrix}
          0 & cdots & 1& 1 & 1 \
          vdots & ddots & vdots & vdots & vdots \
          1 & cdots & 1 & 1 & 0
          end{vmatrix}=detleft(begin{pmatrix}
          1 & cdots & 1& 1 & 1 \
          vdots & ddots & vdots & vdots & vdots \
          1 & cdots & 1 & 1 & 1
          end{pmatrix}-I_nright)=det(B_n-I_n)$$

          Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.






          share|cite|improve this answer











          $endgroup$
















            5












            5








            5





            $begingroup$

            $$det A_n=begin{vmatrix}
            0 & cdots & 1& 1 & 1 \
            vdots & ddots & vdots & vdots & vdots \
            1 & cdots & 1 & 1 & 0
            end{vmatrix}=detleft(begin{pmatrix}
            1 & cdots & 1& 1 & 1 \
            vdots & ddots & vdots & vdots & vdots \
            1 & cdots & 1 & 1 & 1
            end{pmatrix}-I_nright)=det(B_n-I_n)$$

            Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.






            share|cite|improve this answer











            $endgroup$



            $$det A_n=begin{vmatrix}
            0 & cdots & 1& 1 & 1 \
            vdots & ddots & vdots & vdots & vdots \
            1 & cdots & 1 & 1 & 0
            end{vmatrix}=detleft(begin{pmatrix}
            1 & cdots & 1& 1 & 1 \
            vdots & ddots & vdots & vdots & vdots \
            1 & cdots & 1 & 1 & 1
            end{pmatrix}-I_nright)=det(B_n-I_n)$$

            Now, $B_n$ has rank $1$, so $0$ is a $(n-1)$ fold eigenvalue of $B_n$ Hence, $(-1)$ is a $(n-1)$ fold eigenvalue of $A_n$. The other eigenvalue is $(n-1)$, since it's the sum of elements in each row. Hence, the determinant is $(-1)^{(n-1)}(n-1)$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 25 '18 at 11:32

























            answered Dec 25 '18 at 11:05









            SinTan1729SinTan1729

            2,682723




            2,682723























                3












                $begingroup$

                Notice that



                $$begin{bmatrix} 0 & 1 & cdots & 1\
                1 & 0 & cdots & 1\
                vdots & vdots & ddots & vdots\
                1 & 1 &cdots & 0
                end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
                end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
                end{bmatrix}$$



                $$begin{bmatrix} 0 & 1 & cdots & 1\
                1 & 0 & cdots & 1\
                vdots & vdots & ddots & vdots\
                1 & 1 &cdots & 0
                end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
                end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
                end{bmatrix}$$

                $$begin{bmatrix} 0 & 1 & cdots & 1\
                1 & 0 & cdots & 1\
                vdots & vdots & ddots & vdots\
                1 & 1 &cdots & 0
                end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
                end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
                end{bmatrix}$$

                $$vdots $$
                $$begin{bmatrix} 0 & 1 & cdots & 1\
                1 & 0 & cdots & 1\
                vdots & vdots & ddots & vdots\
                1 & 1 &cdots & 0
                end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
                end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
                end{bmatrix}$$



                All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.



                Therefore the determinant is $(-1)^{n-1}(n-1)$.






                share|cite|improve this answer









                $endgroup$


















                  3












                  $begingroup$

                  Notice that



                  $$begin{bmatrix} 0 & 1 & cdots & 1\
                  1 & 0 & cdots & 1\
                  vdots & vdots & ddots & vdots\
                  1 & 1 &cdots & 0
                  end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
                  end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
                  end{bmatrix}$$



                  $$begin{bmatrix} 0 & 1 & cdots & 1\
                  1 & 0 & cdots & 1\
                  vdots & vdots & ddots & vdots\
                  1 & 1 &cdots & 0
                  end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
                  end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
                  end{bmatrix}$$

                  $$begin{bmatrix} 0 & 1 & cdots & 1\
                  1 & 0 & cdots & 1\
                  vdots & vdots & ddots & vdots\
                  1 & 1 &cdots & 0
                  end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
                  end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
                  end{bmatrix}$$

                  $$vdots $$
                  $$begin{bmatrix} 0 & 1 & cdots & 1\
                  1 & 0 & cdots & 1\
                  vdots & vdots & ddots & vdots\
                  1 & 1 &cdots & 0
                  end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
                  end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
                  end{bmatrix}$$



                  All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.



                  Therefore the determinant is $(-1)^{n-1}(n-1)$.






                  share|cite|improve this answer









                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    Notice that



                    $$begin{bmatrix} 0 & 1 & cdots & 1\
                    1 & 0 & cdots & 1\
                    vdots & vdots & ddots & vdots\
                    1 & 1 &cdots & 0
                    end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
                    end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
                    end{bmatrix}$$



                    $$begin{bmatrix} 0 & 1 & cdots & 1\
                    1 & 0 & cdots & 1\
                    vdots & vdots & ddots & vdots\
                    1 & 1 &cdots & 0
                    end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
                    end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
                    end{bmatrix}$$

                    $$begin{bmatrix} 0 & 1 & cdots & 1\
                    1 & 0 & cdots & 1\
                    vdots & vdots & ddots & vdots\
                    1 & 1 &cdots & 0
                    end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
                    end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
                    end{bmatrix}$$

                    $$vdots $$
                    $$begin{bmatrix} 0 & 1 & cdots & 1\
                    1 & 0 & cdots & 1\
                    vdots & vdots & ddots & vdots\
                    1 & 1 &cdots & 0
                    end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
                    end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
                    end{bmatrix}$$



                    All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.



                    Therefore the determinant is $(-1)^{n-1}(n-1)$.






                    share|cite|improve this answer









                    $endgroup$



                    Notice that



                    $$begin{bmatrix} 0 & 1 & cdots & 1\
                    1 & 0 & cdots & 1\
                    vdots & vdots & ddots & vdots\
                    1 & 1 &cdots & 0
                    end{bmatrix}begin{bmatrix} 1 \ 1 \ vdots \ 1
                    end{bmatrix} = (n-1)begin{bmatrix} 1 \ 1 \ vdots \ 1
                    end{bmatrix}$$



                    $$begin{bmatrix} 0 & 1 & cdots & 1\
                    1 & 0 & cdots & 1\
                    vdots & vdots & ddots & vdots\
                    1 & 1 &cdots & 0
                    end{bmatrix}begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
                    end{bmatrix} = -begin{bmatrix} 1 \ -1 \ 0 \ vdots \ 0
                    end{bmatrix}$$

                    $$begin{bmatrix} 0 & 1 & cdots & 1\
                    1 & 0 & cdots & 1\
                    vdots & vdots & ddots & vdots\
                    1 & 1 &cdots & 0
                    end{bmatrix}begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
                    end{bmatrix} = -begin{bmatrix} 1 \ 0 \ -1 \ vdots \ 0
                    end{bmatrix}$$

                    $$vdots $$
                    $$begin{bmatrix} 0 & 1 & cdots & 1\
                    1 & 0 & cdots & 1\
                    vdots & vdots & ddots & vdots\
                    1 & 1 &cdots & 0
                    end{bmatrix}begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
                    end{bmatrix} = -begin{bmatrix} 1 \ 0 \ 0 \ vdots \ -1
                    end{bmatrix}$$



                    All eigenvectors here are linearly independent so the eigenvalues are $-1$ with multiplicity $n-1$ and $n-1$ with multiplicity one.



                    Therefore the determinant is $(-1)^{n-1}(n-1)$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 25 '18 at 11:19









                    mechanodroidmechanodroid

                    28.9k62648




                    28.9k62648























                        0












                        $begingroup$

                        For $n = 1$, we have
                        $$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$



                        For $n=2$, we have
                        $$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$



                        For $n = 3$, we have
                        $$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$



                        For $n = 4$, we have
                        $$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$



                        For $n = 5$, we have
                        $$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$



                        So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
                        $$ det A = (-1)^{n-1} (n-1). $$



                        Hope this helps.



                        For calculation of determinants, I've used this online tool.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          For $n = 1$, we have
                          $$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$



                          For $n=2$, we have
                          $$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$



                          For $n = 3$, we have
                          $$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$



                          For $n = 4$, we have
                          $$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$



                          For $n = 5$, we have
                          $$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$



                          So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
                          $$ det A = (-1)^{n-1} (n-1). $$



                          Hope this helps.



                          For calculation of determinants, I've used this online tool.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            For $n = 1$, we have
                            $$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$



                            For $n=2$, we have
                            $$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$



                            For $n = 3$, we have
                            $$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$



                            For $n = 4$, we have
                            $$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$



                            For $n = 5$, we have
                            $$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$



                            So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
                            $$ det A = (-1)^{n-1} (n-1). $$



                            Hope this helps.



                            For calculation of determinants, I've used this online tool.






                            share|cite|improve this answer









                            $endgroup$



                            For $n = 1$, we have
                            $$ det left[ begin{matrix} 0 end{matrix} right] = 0.$$



                            For $n=2$, we have
                            $$ det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] = -1. $$



                            For $n = 3$, we have
                            $$ det left[ begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 end{matrix} right] = 0 det left[ begin{matrix} 0 & 1 \ 1 & 0 end{matrix} right] - 1 det left[ begin{matrix} 1 & 1 \ 1 & 0 end{matrix} right] + 1 det left[ begin{matrix} 1 & 0 \ 1 & 1 end{matrix} right] = 2. $$



                            For $n = 4$, we have
                            $$ det left[ begin{matrix} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 end{matrix} right] = -3. $$



                            For $n = 5$, we have
                            $$ det left[ begin{matrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 end{matrix} right] = 4. $$



                            So, in general, if $A$ is your $n times n$ matrix with all diagonal entries equal to $0$ and all off-diagonal entries equal to $1$, then we have
                            $$ det A = (-1)^{n-1} (n-1). $$



                            Hope this helps.



                            For calculation of determinants, I've used this online tool.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 25 '18 at 11:53









                            Saaqib MahmoodSaaqib Mahmood

                            7,91842581




                            7,91842581















                                Popular posts from this blog

                                Bundesstraße 106

                                Verónica Boquete

                                Ida-Boy-Ed-Garten