The definition of orthogonal complement in the column space
$begingroup$
Denote $A^bot$ is the matrix satisfied $A'A^bot=0$ with the highest rank. Proof that:
(1)$I-(A')^-A'$ is a $A^bot$, here $A^-$ means pseudo inverse.
(2)$M(A^bot)=M(A)^bot$. $M(A)$ is the column space of matrix $A$.
In the first question, it is obvious that $A' (I-(A')^-A')=0$. But how to proof $I-(A')^-A'$ has the highest rank?
In the second question, the common way may be to proof $alphain M(A^bot)Longleftrightarrow alphain M(A)^bot$. Then I don't know how to go on since the definition of $A^bot$ is abstract to me.
linear-algebra orthogonality pseudoinverse
$endgroup$
add a comment |
$begingroup$
Denote $A^bot$ is the matrix satisfied $A'A^bot=0$ with the highest rank. Proof that:
(1)$I-(A')^-A'$ is a $A^bot$, here $A^-$ means pseudo inverse.
(2)$M(A^bot)=M(A)^bot$. $M(A)$ is the column space of matrix $A$.
In the first question, it is obvious that $A' (I-(A')^-A')=0$. But how to proof $I-(A')^-A'$ has the highest rank?
In the second question, the common way may be to proof $alphain M(A^bot)Longleftrightarrow alphain M(A)^bot$. Then I don't know how to go on since the definition of $A^bot$ is abstract to me.
linear-algebra orthogonality pseudoinverse
$endgroup$
add a comment |
$begingroup$
Denote $A^bot$ is the matrix satisfied $A'A^bot=0$ with the highest rank. Proof that:
(1)$I-(A')^-A'$ is a $A^bot$, here $A^-$ means pseudo inverse.
(2)$M(A^bot)=M(A)^bot$. $M(A)$ is the column space of matrix $A$.
In the first question, it is obvious that $A' (I-(A')^-A')=0$. But how to proof $I-(A')^-A'$ has the highest rank?
In the second question, the common way may be to proof $alphain M(A^bot)Longleftrightarrow alphain M(A)^bot$. Then I don't know how to go on since the definition of $A^bot$ is abstract to me.
linear-algebra orthogonality pseudoinverse
$endgroup$
Denote $A^bot$ is the matrix satisfied $A'A^bot=0$ with the highest rank. Proof that:
(1)$I-(A')^-A'$ is a $A^bot$, here $A^-$ means pseudo inverse.
(2)$M(A^bot)=M(A)^bot$. $M(A)$ is the column space of matrix $A$.
In the first question, it is obvious that $A' (I-(A')^-A')=0$. But how to proof $I-(A')^-A'$ has the highest rank?
In the second question, the common way may be to proof $alphain M(A^bot)Longleftrightarrow alphain M(A)^bot$. Then I don't know how to go on since the definition of $A^bot$ is abstract to me.
linear-algebra orthogonality pseudoinverse
linear-algebra orthogonality pseudoinverse
edited Dec 26 '18 at 0:56
bregg
asked Dec 25 '18 at 11:17
breggbregg
235
235
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052017%2fthe-definition-of-orthogonal-complement-in-the-column-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052017%2fthe-definition-of-orthogonal-complement-in-the-column-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown