The associated Schubert variety of a flag of subspaces of a vector space.












1












$begingroup$


Let $V$ be a vector space and $W_1 subsetneq W_2 subsetneq ... subsetneq W_ell subsetneq V $ a flag of subspaces.



The associated Schubert variety is defined as :
$ Omega ( W_{ bullet } ) = { W in Gr_k ( V ) | mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell } $.



My question is to know what is the idea behind the fact to define this kind of varieties ?



Why did we choose to define a Shubert variety with this condition that :
$ mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell $



Thanks in advance for your help.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $V$ be a vector space and $W_1 subsetneq W_2 subsetneq ... subsetneq W_ell subsetneq V $ a flag of subspaces.



    The associated Schubert variety is defined as :
    $ Omega ( W_{ bullet } ) = { W in Gr_k ( V ) | mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell } $.



    My question is to know what is the idea behind the fact to define this kind of varieties ?



    Why did we choose to define a Shubert variety with this condition that :
    $ mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell $



    Thanks in advance for your help.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let $V$ be a vector space and $W_1 subsetneq W_2 subsetneq ... subsetneq W_ell subsetneq V $ a flag of subspaces.



      The associated Schubert variety is defined as :
      $ Omega ( W_{ bullet } ) = { W in Gr_k ( V ) | mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell } $.



      My question is to know what is the idea behind the fact to define this kind of varieties ?



      Why did we choose to define a Shubert variety with this condition that :
      $ mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell $



      Thanks in advance for your help.










      share|cite|improve this question











      $endgroup$




      Let $V$ be a vector space and $W_1 subsetneq W_2 subsetneq ... subsetneq W_ell subsetneq V $ a flag of subspaces.



      The associated Schubert variety is defined as :
      $ Omega ( W_{ bullet } ) = { W in Gr_k ( V ) | mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell } $.



      My question is to know what is the idea behind the fact to define this kind of varieties ?



      Why did we choose to define a Shubert variety with this condition that :
      $ mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell $



      Thanks in advance for your help.







      complex-geometry projective-geometry grassmannian complex-manifolds schubert-calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 25 '18 at 11:46









      Matt Samuel

      39.2k63770




      39.2k63770










      asked Mar 18 '16 at 20:13









      Lina45Lina45

      1286




      1286






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:




          • up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;


          • $G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;


          • without loss of generality, $T$ is contained in $P$;


          • the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);



          and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.



          One can consider the action:
          begin{gather}
          alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
          F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
          Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
          end{gather}
          where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.



          One can prove that:
          begin{equation}
          mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
          end{equation}
          where $E_{1_W}$ is the standard complete flag
          begin{equation}
          {underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
          end{equation}
          for example, see theorem 10.2.7 [BL].



          Considered the set:
          begin{gather}
          mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
          end{gather}
          it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).



          Remarks.




          1. Any Schubert cell and variety is parametrized by an element of $W$!

          2. The Grassmannians are particular flag varieties!

          3. Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.


          Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
          begin{equation}
          E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
          end{equation}
          which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.



          Let
          begin{equation}
          A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
          end{equation}
          that is
          begin{equation}
          a_j^i=begin{cases}
          1iff j=w(i)\
          0iff text{otherwise}
          end{cases};
          end{equation}
          because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
          begin{equation}
          left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
          m_{w(i)}^j=delta_i^j\
          m_i^j=0iff i>w(j)
          end{cases}right},
          end{equation}
          that is $C_w$ is the set
          begin{equation}
          left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
          m_{w(i)}^j=delta_i^j\
          m_i^j=0iff i>w(j)
          end{cases}right};
          end{equation}
          in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.



          For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].



          Defined
          begin{gather}
          I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
          underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
          end{gather}
          by the previous reasoning and definition
          begin{equation}
          X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
          end{equation}
          where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.



          As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.



          Now, how can we interpret $X_w$?



          First of all, let $underline{i}in I_{k,n}$, we can define
          begin{gather}
          win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
          forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
          end{gather}
          in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
          begin{equation}
          F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
          end{equation}
          let $[W]in X=X_{underline i}$, by construction:
          begin{equation}
          [W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
          end{equation}
          in particular:
          begin{equation}
          forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
          end{equation}
          and vice versa; for other details, see lemma 1.4.5 from [L].



          For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].



          Bibliography



          [B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org



          [BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University



          [L] Littelmann P. - Schubert varieties; available on personal web page






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1703540%2fthe-associated-schubert-variety-of-a-flag-of-subspaces-of-a-vector-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:




            • up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;


            • $G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;


            • without loss of generality, $T$ is contained in $P$;


            • the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);



            and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.



            One can consider the action:
            begin{gather}
            alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
            F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
            Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
            end{gather}
            where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.



            One can prove that:
            begin{equation}
            mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
            end{equation}
            where $E_{1_W}$ is the standard complete flag
            begin{equation}
            {underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
            end{equation}
            for example, see theorem 10.2.7 [BL].



            Considered the set:
            begin{gather}
            mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
            end{gather}
            it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).



            Remarks.




            1. Any Schubert cell and variety is parametrized by an element of $W$!

            2. The Grassmannians are particular flag varieties!

            3. Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.


            Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
            begin{equation}
            E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
            end{equation}
            which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.



            Let
            begin{equation}
            A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
            end{equation}
            that is
            begin{equation}
            a_j^i=begin{cases}
            1iff j=w(i)\
            0iff text{otherwise}
            end{cases};
            end{equation}
            because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
            begin{equation}
            left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
            m_{w(i)}^j=delta_i^j\
            m_i^j=0iff i>w(j)
            end{cases}right},
            end{equation}
            that is $C_w$ is the set
            begin{equation}
            left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
            m_{w(i)}^j=delta_i^j\
            m_i^j=0iff i>w(j)
            end{cases}right};
            end{equation}
            in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.



            For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].



            Defined
            begin{gather}
            I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
            underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
            end{gather}
            by the previous reasoning and definition
            begin{equation}
            X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
            end{equation}
            where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.



            As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.



            Now, how can we interpret $X_w$?



            First of all, let $underline{i}in I_{k,n}$, we can define
            begin{gather}
            win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
            forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
            end{gather}
            in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
            begin{equation}
            F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
            end{equation}
            let $[W]in X=X_{underline i}$, by construction:
            begin{equation}
            [W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
            end{equation}
            in particular:
            begin{equation}
            forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
            end{equation}
            and vice versa; for other details, see lemma 1.4.5 from [L].



            For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].



            Bibliography



            [B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org



            [BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University



            [L] Littelmann P. - Schubert varieties; available on personal web page






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:




              • up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;


              • $G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;


              • without loss of generality, $T$ is contained in $P$;


              • the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);



              and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.



              One can consider the action:
              begin{gather}
              alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
              F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
              Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
              end{gather}
              where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.



              One can prove that:
              begin{equation}
              mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
              end{equation}
              where $E_{1_W}$ is the standard complete flag
              begin{equation}
              {underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
              end{equation}
              for example, see theorem 10.2.7 [BL].



              Considered the set:
              begin{gather}
              mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
              end{gather}
              it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).



              Remarks.




              1. Any Schubert cell and variety is parametrized by an element of $W$!

              2. The Grassmannians are particular flag varieties!

              3. Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.


              Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
              begin{equation}
              E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
              end{equation}
              which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.



              Let
              begin{equation}
              A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
              end{equation}
              that is
              begin{equation}
              a_j^i=begin{cases}
              1iff j=w(i)\
              0iff text{otherwise}
              end{cases};
              end{equation}
              because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
              begin{equation}
              left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
              m_{w(i)}^j=delta_i^j\
              m_i^j=0iff i>w(j)
              end{cases}right},
              end{equation}
              that is $C_w$ is the set
              begin{equation}
              left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
              m_{w(i)}^j=delta_i^j\
              m_i^j=0iff i>w(j)
              end{cases}right};
              end{equation}
              in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.



              For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].



              Defined
              begin{gather}
              I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
              underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
              end{gather}
              by the previous reasoning and definition
              begin{equation}
              X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
              end{equation}
              where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.



              As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.



              Now, how can we interpret $X_w$?



              First of all, let $underline{i}in I_{k,n}$, we can define
              begin{gather}
              win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
              forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
              end{gather}
              in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
              begin{equation}
              F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
              end{equation}
              let $[W]in X=X_{underline i}$, by construction:
              begin{equation}
              [W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
              end{equation}
              in particular:
              begin{equation}
              forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
              end{equation}
              and vice versa; for other details, see lemma 1.4.5 from [L].



              For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].



              Bibliography



              [B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org



              [BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University



              [L] Littelmann P. - Schubert varieties; available on personal web page






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:




                • up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;


                • $G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;


                • without loss of generality, $T$ is contained in $P$;


                • the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);



                and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.



                One can consider the action:
                begin{gather}
                alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
                F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
                Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
                end{gather}
                where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.



                One can prove that:
                begin{equation}
                mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
                end{equation}
                where $E_{1_W}$ is the standard complete flag
                begin{equation}
                {underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
                end{equation}
                for example, see theorem 10.2.7 [BL].



                Considered the set:
                begin{gather}
                mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
                end{gather}
                it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).



                Remarks.




                1. Any Schubert cell and variety is parametrized by an element of $W$!

                2. The Grassmannians are particular flag varieties!

                3. Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.


                Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
                begin{equation}
                E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
                end{equation}
                which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.



                Let
                begin{equation}
                A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
                end{equation}
                that is
                begin{equation}
                a_j^i=begin{cases}
                1iff j=w(i)\
                0iff text{otherwise}
                end{cases};
                end{equation}
                because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
                begin{equation}
                left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
                m_{w(i)}^j=delta_i^j\
                m_i^j=0iff i>w(j)
                end{cases}right},
                end{equation}
                that is $C_w$ is the set
                begin{equation}
                left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
                m_{w(i)}^j=delta_i^j\
                m_i^j=0iff i>w(j)
                end{cases}right};
                end{equation}
                in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.



                For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].



                Defined
                begin{gather}
                I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
                underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
                end{gather}
                by the previous reasoning and definition
                begin{equation}
                X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
                end{equation}
                where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.



                As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.



                Now, how can we interpret $X_w$?



                First of all, let $underline{i}in I_{k,n}$, we can define
                begin{gather}
                win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
                forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
                end{gather}
                in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
                begin{equation}
                F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
                end{equation}
                let $[W]in X=X_{underline i}$, by construction:
                begin{equation}
                [W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
                end{equation}
                in particular:
                begin{equation}
                forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
                end{equation}
                and vice versa; for other details, see lemma 1.4.5 from [L].



                For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].



                Bibliography



                [B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org



                [BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University



                [L] Littelmann P. - Schubert varieties; available on personal web page






                share|cite|improve this answer











                $endgroup$



                I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:




                • up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;


                • $G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;


                • without loss of generality, $T$ is contained in $P$;


                • the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);



                and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.



                One can consider the action:
                begin{gather}
                alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
                F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
                Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
                end{gather}
                where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.



                One can prove that:
                begin{equation}
                mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
                end{equation}
                where $E_{1_W}$ is the standard complete flag
                begin{equation}
                {underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
                end{equation}
                for example, see theorem 10.2.7 [BL].



                Considered the set:
                begin{gather}
                mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
                end{gather}
                it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).



                Remarks.




                1. Any Schubert cell and variety is parametrized by an element of $W$!

                2. The Grassmannians are particular flag varieties!

                3. Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.


                Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
                begin{equation}
                E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
                end{equation}
                which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.



                Let
                begin{equation}
                A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
                end{equation}
                that is
                begin{equation}
                a_j^i=begin{cases}
                1iff j=w(i)\
                0iff text{otherwise}
                end{cases};
                end{equation}
                because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
                begin{equation}
                left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
                m_{w(i)}^j=delta_i^j\
                m_i^j=0iff i>w(j)
                end{cases}right},
                end{equation}
                that is $C_w$ is the set
                begin{equation}
                left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
                m_{w(i)}^j=delta_i^j\
                m_i^j=0iff i>w(j)
                end{cases}right};
                end{equation}
                in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.



                For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].



                Defined
                begin{gather}
                I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
                underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
                end{gather}
                by the previous reasoning and definition
                begin{equation}
                X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
                end{equation}
                where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.



                As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.



                Now, how can we interpret $X_w$?



                First of all, let $underline{i}in I_{k,n}$, we can define
                begin{gather}
                win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
                forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
                end{gather}
                in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
                begin{equation}
                F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
                end{equation}
                let $[W]in X=X_{underline i}$, by construction:
                begin{equation}
                [W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
                end{equation}
                in particular:
                begin{equation}
                forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
                end{equation}
                and vice versa; for other details, see lemma 1.4.5 from [L].



                For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].



                Bibliography



                [B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org



                [BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University



                [L] Littelmann P. - Schubert varieties; available on personal web page







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Mar 27 '18 at 22:30

























                answered Apr 28 '16 at 13:59









                Armando j18eosArmando j18eos

                2,64511428




                2,64511428






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1703540%2fthe-associated-schubert-variety-of-a-flag-of-subspaces-of-a-vector-space%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Le Mesnil-Réaume

                    Ida-Boy-Ed-Garten

                    web3.py web3.isConnected() returns false always