The associated Schubert variety of a flag of subspaces of a vector space.
$begingroup$
Let $V$ be a vector space and $W_1 subsetneq W_2 subsetneq ... subsetneq W_ell subsetneq V $ a flag of subspaces.
The associated Schubert variety is defined as :
$ Omega ( W_{ bullet } ) = { W in Gr_k ( V ) | mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell } $.
My question is to know what is the idea behind the fact to define this kind of varieties ?
Why did we choose to define a Shubert variety with this condition that :
$ mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell $
Thanks in advance for your help.
complex-geometry projective-geometry grassmannian complex-manifolds schubert-calculus
$endgroup$
add a comment |
$begingroup$
Let $V$ be a vector space and $W_1 subsetneq W_2 subsetneq ... subsetneq W_ell subsetneq V $ a flag of subspaces.
The associated Schubert variety is defined as :
$ Omega ( W_{ bullet } ) = { W in Gr_k ( V ) | mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell } $.
My question is to know what is the idea behind the fact to define this kind of varieties ?
Why did we choose to define a Shubert variety with this condition that :
$ mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell $
Thanks in advance for your help.
complex-geometry projective-geometry grassmannian complex-manifolds schubert-calculus
$endgroup$
add a comment |
$begingroup$
Let $V$ be a vector space and $W_1 subsetneq W_2 subsetneq ... subsetneq W_ell subsetneq V $ a flag of subspaces.
The associated Schubert variety is defined as :
$ Omega ( W_{ bullet } ) = { W in Gr_k ( V ) | mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell } $.
My question is to know what is the idea behind the fact to define this kind of varieties ?
Why did we choose to define a Shubert variety with this condition that :
$ mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell $
Thanks in advance for your help.
complex-geometry projective-geometry grassmannian complex-manifolds schubert-calculus
$endgroup$
Let $V$ be a vector space and $W_1 subsetneq W_2 subsetneq ... subsetneq W_ell subsetneq V $ a flag of subspaces.
The associated Schubert variety is defined as :
$ Omega ( W_{ bullet } ) = { W in Gr_k ( V ) | mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell } $.
My question is to know what is the idea behind the fact to define this kind of varieties ?
Why did we choose to define a Shubert variety with this condition that :
$ mathrm{dim} ( W bigcap W_i ) geq i , i = 1 , dots , ell $
Thanks in advance for your help.
complex-geometry projective-geometry grassmannian complex-manifolds schubert-calculus
complex-geometry projective-geometry grassmannian complex-manifolds schubert-calculus
edited Dec 25 '18 at 11:46
Matt Samuel
39.2k63770
39.2k63770
asked Mar 18 '16 at 20:13
Lina45Lina45
1286
1286
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:
up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;
$G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;
without loss of generality, $T$ is contained in $P$;
the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);
and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.
One can consider the action:
begin{gather}
alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
end{gather}
where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.
One can prove that:
begin{equation}
mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
end{equation}
where $E_{1_W}$ is the standard complete flag
begin{equation}
{underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
end{equation}
for example, see theorem 10.2.7 [BL].
Considered the set:
begin{gather}
mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
end{gather}
it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).
Remarks.
- Any Schubert cell and variety is parametrized by an element of $W$!
- The Grassmannians are particular flag varieties!
- Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.
Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
begin{equation}
E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
end{equation}
which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.
Let
begin{equation}
A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
end{equation}
that is
begin{equation}
a_j^i=begin{cases}
1iff j=w(i)\
0iff text{otherwise}
end{cases};
end{equation}
because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
begin{equation}
left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right},
end{equation}
that is $C_w$ is the set
begin{equation}
left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right};
end{equation}
in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.
For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].
Defined
begin{gather}
I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
end{gather}
by the previous reasoning and definition
begin{equation}
X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
end{equation}
where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.
As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.
Now, how can we interpret $X_w$?
First of all, let $underline{i}in I_{k,n}$, we can define
begin{gather}
win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
end{gather}
in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
begin{equation}
F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
end{equation}
let $[W]in X=X_{underline i}$, by construction:
begin{equation}
[W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
end{equation}
in particular:
begin{equation}
forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
end{equation}
and vice versa; for other details, see lemma 1.4.5 from [L].
For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].
Bibliography
[B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org
[BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University
[L] Littelmann P. - Schubert varieties; available on personal web page
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1703540%2fthe-associated-schubert-variety-of-a-flag-of-subspaces-of-a-vector-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:
up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;
$G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;
without loss of generality, $T$ is contained in $P$;
the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);
and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.
One can consider the action:
begin{gather}
alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
end{gather}
where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.
One can prove that:
begin{equation}
mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
end{equation}
where $E_{1_W}$ is the standard complete flag
begin{equation}
{underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
end{equation}
for example, see theorem 10.2.7 [BL].
Considered the set:
begin{gather}
mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
end{gather}
it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).
Remarks.
- Any Schubert cell and variety is parametrized by an element of $W$!
- The Grassmannians are particular flag varieties!
- Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.
Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
begin{equation}
E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
end{equation}
which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.
Let
begin{equation}
A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
end{equation}
that is
begin{equation}
a_j^i=begin{cases}
1iff j=w(i)\
0iff text{otherwise}
end{cases};
end{equation}
because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
begin{equation}
left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right},
end{equation}
that is $C_w$ is the set
begin{equation}
left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right};
end{equation}
in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.
For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].
Defined
begin{gather}
I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
end{gather}
by the previous reasoning and definition
begin{equation}
X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
end{equation}
where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.
As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.
Now, how can we interpret $X_w$?
First of all, let $underline{i}in I_{k,n}$, we can define
begin{gather}
win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
end{gather}
in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
begin{equation}
F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
end{equation}
let $[W]in X=X_{underline i}$, by construction:
begin{equation}
[W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
end{equation}
in particular:
begin{equation}
forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
end{equation}
and vice versa; for other details, see lemma 1.4.5 from [L].
For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].
Bibliography
[B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org
[BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University
[L] Littelmann P. - Schubert varieties; available on personal web page
$endgroup$
add a comment |
$begingroup$
I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:
up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;
$G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;
without loss of generality, $T$ is contained in $P$;
the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);
and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.
One can consider the action:
begin{gather}
alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
end{gather}
where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.
One can prove that:
begin{equation}
mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
end{equation}
where $E_{1_W}$ is the standard complete flag
begin{equation}
{underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
end{equation}
for example, see theorem 10.2.7 [BL].
Considered the set:
begin{gather}
mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
end{gather}
it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).
Remarks.
- Any Schubert cell and variety is parametrized by an element of $W$!
- The Grassmannians are particular flag varieties!
- Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.
Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
begin{equation}
E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
end{equation}
which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.
Let
begin{equation}
A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
end{equation}
that is
begin{equation}
a_j^i=begin{cases}
1iff j=w(i)\
0iff text{otherwise}
end{cases};
end{equation}
because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
begin{equation}
left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right},
end{equation}
that is $C_w$ is the set
begin{equation}
left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right};
end{equation}
in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.
For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].
Defined
begin{gather}
I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
end{gather}
by the previous reasoning and definition
begin{equation}
X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
end{equation}
where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.
As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.
Now, how can we interpret $X_w$?
First of all, let $underline{i}in I_{k,n}$, we can define
begin{gather}
win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
end{gather}
in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
begin{equation}
F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
end{equation}
let $[W]in X=X_{underline i}$, by construction:
begin{equation}
[W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
end{equation}
in particular:
begin{equation}
forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
end{equation}
and vice versa; for other details, see lemma 1.4.5 from [L].
For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].
Bibliography
[B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org
[BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University
[L] Littelmann P. - Schubert varieties; available on personal web page
$endgroup$
add a comment |
$begingroup$
I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:
up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;
$G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;
without loss of generality, $T$ is contained in $P$;
the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);
and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.
One can consider the action:
begin{gather}
alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
end{gather}
where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.
One can prove that:
begin{equation}
mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
end{equation}
where $E_{1_W}$ is the standard complete flag
begin{equation}
{underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
end{equation}
for example, see theorem 10.2.7 [BL].
Considered the set:
begin{gather}
mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
end{gather}
it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).
Remarks.
- Any Schubert cell and variety is parametrized by an element of $W$!
- The Grassmannians are particular flag varieties!
- Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.
Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
begin{equation}
E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
end{equation}
which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.
Let
begin{equation}
A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
end{equation}
that is
begin{equation}
a_j^i=begin{cases}
1iff j=w(i)\
0iff text{otherwise}
end{cases};
end{equation}
because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
begin{equation}
left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right},
end{equation}
that is $C_w$ is the set
begin{equation}
left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right};
end{equation}
in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.
For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].
Defined
begin{gather}
I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
end{gather}
by the previous reasoning and definition
begin{equation}
X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
end{equation}
where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.
As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.
Now, how can we interpret $X_w$?
First of all, let $underline{i}in I_{k,n}$, we can define
begin{gather}
win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
end{gather}
in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
begin{equation}
F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
end{equation}
let $[W]in X=X_{underline i}$, by construction:
begin{equation}
[W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
end{equation}
in particular:
begin{equation}
forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
end{equation}
and vice versa; for other details, see lemma 1.4.5 from [L].
For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].
Bibliography
[B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org
[BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University
[L] Littelmann P. - Schubert varieties; available on personal web page
$endgroup$
I get $G=mathrm{GL}(n,mathbb{C})$, let $B$ be a Borel subgroup of $G$, let $P$ be a parabolic subgroup of $G$ and let $T$ be a maximal torus in $G$; we know that:
up to conjugation: $T$ is the group of diagonal matrices, $B$ is the group of upper triangular matrices; in particular: $B$ is $Tltimes U$, the semidirect product of $T$ with the group $U$ of unipotent upper triangular matrices;
$G_{displaystyle/P}$ is the variety $mathcal{F}$ of flags of type $(1leq m_1<dots<m_rleq n)$ of $mathbb{V}$ (a complex vector space of dimension $n$); in particular $G_{displaystyle/B}$ is the variety $mathcal{B}$ of complete flags of $mathbb{V}$;
without loss of generality, $T$ is contained in $P$;
the Weyl group $W$ of $G$ is defined as $N_G(T)_{displaystyle/C_G(T)}=N_G(T)_{displaystyle/T}$ (the normalizer of $T$ in $G$ quotiented by the centralizer of $T$ in $G$), because $T$ is a maximal torus then $T=C_G(T)$ (ever);
and in particular, the Weyl group of $mathrm{GL}(n,mathbb{C})$ is the $n$-th symmetryc group $S_n$.
One can consider the action:
begin{gather}
alpha:(M,F_{bullet})in Gtimesmathcal{F}to Mcdot F_{bullet}inmathcal{F},\
F_{bullet}equiv{underline{0}}subsetneqqleftlangle e_1,dots, e_{m_1}rightranglesubsetneqqleftlangle e_1,dots, e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V},\
Mcdot F_{bullet}equiv{underline{0}}subsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_1}rightranglesubsetneqqleftlangle Mcdot e_1,dots,Mcdot e_{m_2}rightranglesubsetneqqdotssubsetneqqmathbb{V}
end{gather}
where ${e_1,dots,e_n}$ is a basis of $mathbb{V}$.
One can prove that:
begin{equation}
mathrm{Fix}^{alpha}_T(mathcal{B})={E_wequiv wBinmathcal{B}mid win W},
end{equation}
where $E_{1_W}$ is the standard complete flag
begin{equation}
{underline{0}}subsetneqqlangle e_1ranglesubsetneqqlangle e_1,e_2ranglesubsetneqqdotssubsetneqqmathbb{V};
end{equation}
for example, see theorem 10.2.7 [BL].
Considered the set:
begin{gather}
mathrm{Orb}^{alpha}_B(E_w)={bcdot E_winmathcal{F}mid bin B}={ucdot E_winmathcal{F}mid uin U}=mathrm{Orb}^{alpha}_U(E_w),
end{gather}
it is called Schubert cell $C_w$ of $mathcal{F}$; one defines Schubert variety $X_w$ the Zariski closure of $C_w$ in $mathcal{F}$ (see definitions 1.1.2 and 1.2.2 from [B]).
Remarks.
- Any Schubert cell and variety is parametrized by an element of $W$!
- The Grassmannians are particular flag varieties!
- Any complex Lie group is embeddable in some $mathrm{GL}(N,mathbb{C})$, therefore $alpha$ makes sense for any reductive, complex Lie group; and one can define again the flag varieties, the Grassmannians and the Schubert cells and varieties.
Choice $1leq k<n$, let $E_{w_k}$ be the $k$-dimensional space in the flag $E_w$; by the previous reasoning, $E_{w_k}$ is a $T$-fixed point in $G(k,n)$ (the Grassmannian of the $k$-plane of $mathbb{V}$); in particular, there exists $win W$ such that
begin{equation}
E_{w_k}=leftlangle e_{w(1)},dots,e_{w(k)}rightrangle
end{equation}
which corresponds to $left[e_{w(1)}wedgedotswedge e_{w(k)}right]=left[e_{underline w}right]in G(k,n)subseteqmathbb{P}left(bigwedge^kmathbb{V}right)$.
Let
begin{equation}
A_{w_k}=left(a_j^iright)inmathbb{C}_n^kmid e_{w(i)}=sum_{j=1}^na_i^je_jequiv a_i^je_j,
end{equation}
that is
begin{equation}
a_j^i=begin{cases}
1iff j=w(i)\
0iff text{otherwise}
end{cases};
end{equation}
because $C_w$ in $G(k,n)$ is the $U$-orbit of $E_{w_k}$, then $C_w$ is in bijection with set
begin{equation}
left{uA_{w_k}inmathbb{C}_n^kmid uin Uright}=left{M=left(m_i^jright)inmathbb{C}_n^kmidbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right},
end{equation}
that is $C_w$ is the set
begin{equation}
left{left[m_i^1e_{w(1)}wedgedotswedge m_i^ke_{w(k)}right]in G(k,n)midbegin{cases}
m_{w(i)}^j=delta_i^j\
m_i^j=0iff i>w(j)
end{cases}right};
end{equation}
in particular, $C_w$ is an affine agebraic variety in $G(k,n)$.
For these and other details, see lemmata 1.4.3 and 1.4.4 from [L].
Defined
begin{gather}
I_{k,n}=left{underline{i}=(i_1,dots,i_k)in{1,dots,n}^kmid i_1<dots<i_kright}\
underline{i},underline{j}in I_{k,n},,underline{i}lequnderline{j}iffforall hin{1,dots,k},i_hleq j_h;
end{gather}
by the previous reasoning and definition
begin{equation}
X_w=left{[v_1wedgedotswedge v_k]in G(k,n)midforallunderline{i}notlequnderline{w}in I_{k,n},,p_{underline{i}}([v_1wedgedotswedge v_k])=0right}
end{equation}
where the support of $underline{w}$ is ${w(1),dots,w(k)}$; in particular, $X_w$ is a projetive algebraic variety in $G(k,n)$.
As usual, $p_{underline{i}}$ is the $underline{i}$-th Plücker projection, that is the minor $detleft(a_h^{i_h}right)_{hin{1,dots,k}}=d_{underline i}$, where $v_i=a_i^je_j$ and $underline{i}=(i_1,dots,i_k)$.
Now, how can we interpret $X_w$?
First of all, let $underline{i}in I_{k,n}$, we can define
begin{gather}
win S_nmidforall h^{prime}in{1,dots,k},,w(h^{prime})=i_{h^{prime}},\
forall h^{primeprime}in{1,dots,n-k},,w(h^{primeprime}),text{is the},h^{primeprime}text{-th element of the ordered set},{1,dots,n}setminus{i_1,dots,i_k},
end{gather}
in this way there exists a bijection between $S_n$ and $I_{k,n}$. Considering the flag
begin{equation}
F_{underline{i}}equiv{underline0}<leftlangle e_1,dots,e_{i_1}rightrangle=F_{i_1}<leftlangle e_1,dots,e_{i_2}rightrangle=F_{i_2}<dots<leftlangle e_1,dots,e_{i_k}rightrangle=F_{i_k}<mathbb{V};
end{equation}
let $[W]in X=X_{underline i}$, by construction:
begin{equation}
[W]=[v_1wedgedotswedge v_k]=left[sum_{underline{j}lequnderline{i}}d_{underline j}e_{underline j}right]
end{equation}
in particular:
begin{equation}
forall hin{1,dots,k},,dimleft(Wcap F_{i_h}right)geq h
end{equation}
and vice versa; for other details, see lemma 1.4.5 from [L].
For other interpretation of the Schubert varieties, one can see the chapter 1, sections 1 and 2 from [B].
Bibliography
[B] Brion M. - Lectures on the geometry of flag varieties; available on arxiv.org
[BL] Brown J., Lakshimibai V. - Flag Varieties, Northeastern University
[L] Littelmann P. - Schubert varieties; available on personal web page
edited Mar 27 '18 at 22:30
answered Apr 28 '16 at 13:59
Armando j18eosArmando j18eos
2,64511428
2,64511428
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1703540%2fthe-associated-schubert-variety-of-a-flag-of-subspaces-of-a-vector-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown