If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$
$begingroup$
Question $boldsymbol 7$. If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$
Solution:
begin{align*}
y &= 2sin t -sin 2t \
frac{dy}{dt} &= 2cos t -2cos 2t \
frac{dx}{dt} &=-2sin t +2sin 2t \
frac{dy}{dx} &=frac{dy/dt}{dx/dt} =frac{cos t-cos 2t}{-sin t +sin 2t} \
frac{d^2y}{dx^2} &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t -2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t +2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t +2sin t sin 2t -sin t sin 2t -2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t -sin^2 2t) +sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx}
end{align*}
Have I done any mistake so far?
calculus
$endgroup$
add a comment |
$begingroup$
Question $boldsymbol 7$. If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$
Solution:
begin{align*}
y &= 2sin t -sin 2t \
frac{dy}{dt} &= 2cos t -2cos 2t \
frac{dx}{dt} &=-2sin t +2sin 2t \
frac{dy}{dx} &=frac{dy/dt}{dx/dt} =frac{cos t-cos 2t}{-sin t +sin 2t} \
frac{d^2y}{dx^2} &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t -2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t +2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t +2sin t sin 2t -sin t sin 2t -2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t -sin^2 2t) +sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx}
end{align*}
Have I done any mistake so far?
calculus
$endgroup$
2
$begingroup$
Please use MathJax to type your problem. Don't give us the hand-written solutions.
$endgroup$
– jayant98
Dec 25 '18 at 15:24
add a comment |
$begingroup$
Question $boldsymbol 7$. If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$
Solution:
begin{align*}
y &= 2sin t -sin 2t \
frac{dy}{dt} &= 2cos t -2cos 2t \
frac{dx}{dt} &=-2sin t +2sin 2t \
frac{dy}{dx} &=frac{dy/dt}{dx/dt} =frac{cos t-cos 2t}{-sin t +sin 2t} \
frac{d^2y}{dx^2} &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t -2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t +2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t +2sin t sin 2t -sin t sin 2t -2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t -sin^2 2t) +sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx}
end{align*}
Have I done any mistake so far?
calculus
$endgroup$
Question $boldsymbol 7$. If $x=2cos t-cos 2t $, $y=2sin t -sin 2t$, find the value of $frac{d^2y}{dx^2}$ when $t= pi /2$
Solution:
begin{align*}
y &= 2sin t -sin 2t \
frac{dy}{dt} &= 2cos t -2cos 2t \
frac{dx}{dt} &=-2sin t +2sin 2t \
frac{dy}{dx} &=frac{dy/dt}{dx/dt} =frac{cos t-cos 2t}{-sin t +sin 2t} \
frac{d^2y}{dx^2} &=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t -2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t +2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t +2sin t sin 2t -sin t sin 2t -2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t -sin^2 2t) +sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx}
end{align*}
Have I done any mistake so far?
calculus
calculus
edited Dec 26 '18 at 2:29
Key Flex
8,58571233
8,58571233
asked Dec 25 '18 at 15:19
SoumeeSoumee
670614
670614
2
$begingroup$
Please use MathJax to type your problem. Don't give us the hand-written solutions.
$endgroup$
– jayant98
Dec 25 '18 at 15:24
add a comment |
2
$begingroup$
Please use MathJax to type your problem. Don't give us the hand-written solutions.
$endgroup$
– jayant98
Dec 25 '18 at 15:24
2
2
$begingroup$
Please use MathJax to type your problem. Don't give us the hand-written solutions.
$endgroup$
– jayant98
Dec 25 '18 at 15:24
$begingroup$
Please use MathJax to type your problem. Don't give us the hand-written solutions.
$endgroup$
– jayant98
Dec 25 '18 at 15:24
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.
begin{align*}
frac{d^2y}{dx^2}
&=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= ldots
end{align*}
$endgroup$
$begingroup$
Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
$endgroup$
– Soumee
Dec 26 '18 at 6:17
add a comment |
$begingroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
$$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$
Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$
$endgroup$
$begingroup$
could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:07
$begingroup$
@SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
$endgroup$
– Key Flex
Dec 25 '18 at 16:22
1
$begingroup$
You are right in your answer. I made a mistake. I am upvoting yours.
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:40
add a comment |
$begingroup$
$$x = 2cos t -cos 2t$$
$$y = 2sin t -sin 2t$$
$$frac{dx}{dt} = -2sin t +2sin 2t$$
$$frac{dy}{dt} = 2cos t -2cos 2t$$
$$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
$$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$
$endgroup$
$begingroup$
The answer in the book is $frac{3}{2}$
$endgroup$
– Soumee
Dec 25 '18 at 15:49
$begingroup$
It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
$endgroup$
– Takahiro Waki
Dec 25 '18 at 16:18
$begingroup$
@TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
$endgroup$
– Soumee
Dec 26 '18 at 6:20
add a comment |
$begingroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
$$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$
I get
$$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$
$endgroup$
add a comment |
$begingroup$
Alternatively:
$$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052187%2fif-x-2-cos-t-cos-2t-y-2-sin-t-sin-2t-find-the-value-of-fracd2ydx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.
begin{align*}
frac{d^2y}{dx^2}
&=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= ldots
end{align*}
$endgroup$
$begingroup$
Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
$endgroup$
– Soumee
Dec 26 '18 at 6:17
add a comment |
$begingroup$
Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.
begin{align*}
frac{d^2y}{dx^2}
&=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= ldots
end{align*}
$endgroup$
$begingroup$
Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
$endgroup$
– Soumee
Dec 26 '18 at 6:17
add a comment |
$begingroup$
Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.
begin{align*}
frac{d^2y}{dx^2}
&=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= ldots
end{align*}
$endgroup$
Mistake: $displaystyle frac{d}{dt} (cos t -cos 2t) =-sin t color{red}{boldsymbol +}2sin 2t$.
begin{align*}
frac{d^2y}{dx^2}
&=frac{d}{dt} left(frac{cos t-cos 2t}{-sin t +sin 2t}right) cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) frac{d}{dt}(cos t -cos 2t) -(cos t -cos 2t) frac{d}{dt}(sin 2t -sin t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&=frac{(sin 2t -sin t) (-sin t color{red}{boldsymbol +}2sin 2t) -(cos t -cos 2t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{(sin t -sin 2t) (sin t color{red}{boldsymbol -}2sin 2t) +(cos 2t -cos t) (2cos 2t -cos t)}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{sin^2 t color{red}{boldsymbol -}2sin t sin 2t -sin t sin 2t color{red}{boldsymbol +}2sin^2 2t +ldots \ ldots +2cos^2 2t -cos t cos 2t -2cos t cos 2t +cos^2 t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{1 +2(cos^2 2t color{red}{boldsymbol +}sin^2 2t) color{red}{boldsymbol{-3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= frac{color{red}{boldsymbol{3 -3}}sin t sin 2t -3cos t cos 2t}{(sin 2t -sin t)^2} cdot frac{dt}{dx} \
&= ldots
end{align*}
edited Dec 26 '18 at 2:23
answered Dec 26 '18 at 2:12
RócherzRócherz
3,0263823
3,0263823
$begingroup$
Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
$endgroup$
– Soumee
Dec 26 '18 at 6:17
add a comment |
$begingroup$
Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
$endgroup$
– Soumee
Dec 26 '18 at 6:17
$begingroup$
Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
$endgroup$
– Soumee
Dec 26 '18 at 6:17
$begingroup$
Thanks for specifically pointing out my mistake. Though I would equally thank Key Flex for editing the question. Since I have to mark just one answer as the correct answer I would like to mark Rocherz's answer as the correct one as I really wanted to know what mistake I had done. I am thankful to others as well for contributing to the solution of the problem.
$endgroup$
– Soumee
Dec 26 '18 at 6:17
add a comment |
$begingroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
$$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$
Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$
$endgroup$
$begingroup$
could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:07
$begingroup$
@SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
$endgroup$
– Key Flex
Dec 25 '18 at 16:22
1
$begingroup$
You are right in your answer. I made a mistake. I am upvoting yours.
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:40
add a comment |
$begingroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
$$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$
Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$
$endgroup$
$begingroup$
could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:07
$begingroup$
@SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
$endgroup$
– Key Flex
Dec 25 '18 at 16:22
1
$begingroup$
You are right in your answer. I made a mistake. I am upvoting yours.
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:40
add a comment |
$begingroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
$$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$
Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$
$endgroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=dfrac{2cos t-2cos2t}{-2sin t+2sin2t}=dfrac{cos2t-cos t}{sin t-sin2t}$$
$$dfrac{d^2y}{dx^2}=dfrac{(-2sin2t+sin t)(sin t-sin2t)-(cos2t-cos t)(cos t-2cos2t)}{(sin t-sin2t)^2-2(sin t-sin2t)}$$
Now $$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=dfrac{(1)(1-0)-(-1-0)(0-2(-1))}{-2(1-0)^3}=-dfrac32$$
edited Dec 25 '18 at 16:13
answered Dec 25 '18 at 15:59
Key FlexKey Flex
8,58571233
8,58571233
$begingroup$
could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:07
$begingroup$
@SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
$endgroup$
– Key Flex
Dec 25 '18 at 16:22
1
$begingroup$
You are right in your answer. I made a mistake. I am upvoting yours.
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:40
add a comment |
$begingroup$
could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:07
$begingroup$
@SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
$endgroup$
– Key Flex
Dec 25 '18 at 16:22
1
$begingroup$
You are right in your answer. I made a mistake. I am upvoting yours.
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:40
$begingroup$
could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:07
$begingroup$
could you tell me if there is conceptually anything wrong and I cannot find anything wrong unless you tell me if something is basically wrong
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:07
$begingroup$
@SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
$endgroup$
– Key Flex
Dec 25 '18 at 16:22
$begingroup$
@SatishRamanathan I didn't find anything wrong with your solution. But, I wonder how this question is yielding to two different answers.
$endgroup$
– Key Flex
Dec 25 '18 at 16:22
1
1
$begingroup$
You are right in your answer. I made a mistake. I am upvoting yours.
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:40
$begingroup$
You are right in your answer. I made a mistake. I am upvoting yours.
$endgroup$
– Satish Ramanathan
Dec 25 '18 at 16:40
add a comment |
$begingroup$
$$x = 2cos t -cos 2t$$
$$y = 2sin t -sin 2t$$
$$frac{dx}{dt} = -2sin t +2sin 2t$$
$$frac{dy}{dt} = 2cos t -2cos 2t$$
$$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
$$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$
$endgroup$
$begingroup$
The answer in the book is $frac{3}{2}$
$endgroup$
– Soumee
Dec 25 '18 at 15:49
$begingroup$
It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
$endgroup$
– Takahiro Waki
Dec 25 '18 at 16:18
$begingroup$
@TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
$endgroup$
– Soumee
Dec 26 '18 at 6:20
add a comment |
$begingroup$
$$x = 2cos t -cos 2t$$
$$y = 2sin t -sin 2t$$
$$frac{dx}{dt} = -2sin t +2sin 2t$$
$$frac{dy}{dt} = 2cos t -2cos 2t$$
$$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
$$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$
$endgroup$
$begingroup$
The answer in the book is $frac{3}{2}$
$endgroup$
– Soumee
Dec 25 '18 at 15:49
$begingroup$
It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
$endgroup$
– Takahiro Waki
Dec 25 '18 at 16:18
$begingroup$
@TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
$endgroup$
– Soumee
Dec 26 '18 at 6:20
add a comment |
$begingroup$
$$x = 2cos t -cos 2t$$
$$y = 2sin t -sin 2t$$
$$frac{dx}{dt} = -2sin t +2sin 2t$$
$$frac{dy}{dt} = 2cos t -2cos 2t$$
$$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
$$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$
$endgroup$
$$x = 2cos t -cos 2t$$
$$y = 2sin t -sin 2t$$
$$frac{dx}{dt} = -2sin t +2sin 2t$$
$$frac{dy}{dt} = 2cos t -2cos 2t$$
$$dfrac{d^2y}{dx^2}=dfrac{(+sin 2t-sin t)(-sin t+2sin 2t)-(-cos 2t+cos t)(-cos t+2cos 2t)}{(-sin t+sin 2t)^2}cdotfrac{dt}{dx}$$
$$frac{d^2y}{dx^2}_{[frac{pi}{2}]} = -frac{3}{2}$$
edited Dec 26 '18 at 1:29
Rócherz
3,0263823
3,0263823
answered Dec 25 '18 at 15:46
Satish RamanathanSatish Ramanathan
10k31323
10k31323
$begingroup$
The answer in the book is $frac{3}{2}$
$endgroup$
– Soumee
Dec 25 '18 at 15:49
$begingroup$
It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
$endgroup$
– Takahiro Waki
Dec 25 '18 at 16:18
$begingroup$
@TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
$endgroup$
– Soumee
Dec 26 '18 at 6:20
add a comment |
$begingroup$
The answer in the book is $frac{3}{2}$
$endgroup$
– Soumee
Dec 25 '18 at 15:49
$begingroup$
It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
$endgroup$
– Takahiro Waki
Dec 25 '18 at 16:18
$begingroup$
@TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
$endgroup$
– Soumee
Dec 26 '18 at 6:20
$begingroup$
The answer in the book is $frac{3}{2}$
$endgroup$
– Soumee
Dec 25 '18 at 15:49
$begingroup$
The answer in the book is $frac{3}{2}$
$endgroup$
– Soumee
Dec 25 '18 at 15:49
$begingroup$
It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
$endgroup$
– Takahiro Waki
Dec 25 '18 at 16:18
$begingroup$
It seem its (1,2) of cardioid, and it is negative value. wolframalpha.com/input/?i=x%3D2cost-cos2t,+y%3D2sint-sin2t,
$endgroup$
– Takahiro Waki
Dec 25 '18 at 16:18
$begingroup$
@TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
$endgroup$
– Soumee
Dec 26 '18 at 6:20
$begingroup$
@TakahiroWaki Yes, you are right. The answer is $frac{-3}{2}$.
$endgroup$
– Soumee
Dec 26 '18 at 6:20
add a comment |
$begingroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
$$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$
I get
$$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$
$endgroup$
add a comment |
$begingroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
$$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$
I get
$$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$
$endgroup$
add a comment |
$begingroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
$$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$
I get
$$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$
$endgroup$
$$dfrac{dy}{dx}=dfrac{dfrac{dy}{dt}}{dfrac{dx}{dt}}=frac{y'_t}{x'_t}$$
$$dfrac{d^2y}{dx^2}=frac{left(frac{y'_t}{x'_t}right)'_t}{x'_t}=
frac{x'_ty''_{tt}-x''_{tt}y'_t}{(x'_t)^3}$$
I get
$$dfrac{d^2y}{dx^2}bigg|_{t=frac{pi}{2}}=-frac{3}{2}$$
answered Dec 25 '18 at 16:49
Aleksas DomarkasAleksas Domarkas
1,62317
1,62317
add a comment |
add a comment |
$begingroup$
Alternatively:
$$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$
$endgroup$
add a comment |
$begingroup$
Alternatively:
$$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$
$endgroup$
add a comment |
$begingroup$
Alternatively:
$$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$
$endgroup$
Alternatively:
$$xleft(frac{pi}{2}right)=1; yleft(frac{pi}{2}right)=2;\
x=2cos t-cos 2t Rightarrow cos^2t-2cos t+x-1=0 Rightarrow cos t=frac12-frac{sqrt{3-2x}}2;\
x^2+y^2=5-4cos t=5-2+2sqrt{3-2x};\
2x+2yy'=frac{-2}{sqrt{3-2x}} Rightarrow y'(1)=-1;\
2+2y'^2+2yy''=frac{-2}{sqrt{(3-2x)^2}} Rightarrow y''(1)=frac{-6}4=-frac32.$$
answered Dec 25 '18 at 18:47
farruhotafarruhota
21.9k2842
21.9k2842
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052187%2fif-x-2-cos-t-cos-2t-y-2-sin-t-sin-2t-find-the-value-of-fracd2ydx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Please use MathJax to type your problem. Don't give us the hand-written solutions.
$endgroup$
– jayant98
Dec 25 '18 at 15:24