Resolvent kernel of Fredholm integral equation.
$begingroup$
For the linear integral equation
$ y(x)=x+int_{0}^{1/2} y(t) dt$.
Find Resolvent kernel $R(x,t,1)$.
I tried to find resolvent kernel of Volterra integral equation by taking kernel as 1.Then I got $R(x,t,1)=e^{(x-t)}$.But I don't know how to find resolvent kernel of nonhomogeneous Fredholm integral equation of second kind.please guide me.Thanks a lot.
integral-equations
$endgroup$
add a comment |
$begingroup$
For the linear integral equation
$ y(x)=x+int_{0}^{1/2} y(t) dt$.
Find Resolvent kernel $R(x,t,1)$.
I tried to find resolvent kernel of Volterra integral equation by taking kernel as 1.Then I got $R(x,t,1)=e^{(x-t)}$.But I don't know how to find resolvent kernel of nonhomogeneous Fredholm integral equation of second kind.please guide me.Thanks a lot.
integral-equations
$endgroup$
add a comment |
$begingroup$
For the linear integral equation
$ y(x)=x+int_{0}^{1/2} y(t) dt$.
Find Resolvent kernel $R(x,t,1)$.
I tried to find resolvent kernel of Volterra integral equation by taking kernel as 1.Then I got $R(x,t,1)=e^{(x-t)}$.But I don't know how to find resolvent kernel of nonhomogeneous Fredholm integral equation of second kind.please guide me.Thanks a lot.
integral-equations
$endgroup$
For the linear integral equation
$ y(x)=x+int_{0}^{1/2} y(t) dt$.
Find Resolvent kernel $R(x,t,1)$.
I tried to find resolvent kernel of Volterra integral equation by taking kernel as 1.Then I got $R(x,t,1)=e^{(x-t)}$.But I don't know how to find resolvent kernel of nonhomogeneous Fredholm integral equation of second kind.please guide me.Thanks a lot.
integral-equations
integral-equations
asked May 24 '18 at 6:41
ASHWINI SANKHEASHWINI SANKHE
12710
12710
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$k(x,t)=k_1(x,t)=1$,
$k_2(x,t)=int_{0}^{1/2} k(x,z)k_1(z,t) dz=frac {1}{2}$
$k_3(x,t)=int_{0}^{1/2} k(x,z)k_2(z,t) dz=frac {1}{2^2}$......
$k_n(x,t)=int_{0}^{1/2} k(x,z)k_{n-1}(z,t) dz=frac {1}{2^{n-1}}$
Hence $R(x,t,lambda)=sum_{i=0}^infty lambda^i k_{i+1}(x,t)$
$R(x,t,1)=frac{1}{2}+frac {1}{2^2}+frac {1}{2^3}+....=frac{1}{1-(1/2)}=2$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2793948%2fresolvent-kernel-of-fredholm-integral-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$k(x,t)=k_1(x,t)=1$,
$k_2(x,t)=int_{0}^{1/2} k(x,z)k_1(z,t) dz=frac {1}{2}$
$k_3(x,t)=int_{0}^{1/2} k(x,z)k_2(z,t) dz=frac {1}{2^2}$......
$k_n(x,t)=int_{0}^{1/2} k(x,z)k_{n-1}(z,t) dz=frac {1}{2^{n-1}}$
Hence $R(x,t,lambda)=sum_{i=0}^infty lambda^i k_{i+1}(x,t)$
$R(x,t,1)=frac{1}{2}+frac {1}{2^2}+frac {1}{2^3}+....=frac{1}{1-(1/2)}=2$
$endgroup$
add a comment |
$begingroup$
$k(x,t)=k_1(x,t)=1$,
$k_2(x,t)=int_{0}^{1/2} k(x,z)k_1(z,t) dz=frac {1}{2}$
$k_3(x,t)=int_{0}^{1/2} k(x,z)k_2(z,t) dz=frac {1}{2^2}$......
$k_n(x,t)=int_{0}^{1/2} k(x,z)k_{n-1}(z,t) dz=frac {1}{2^{n-1}}$
Hence $R(x,t,lambda)=sum_{i=0}^infty lambda^i k_{i+1}(x,t)$
$R(x,t,1)=frac{1}{2}+frac {1}{2^2}+frac {1}{2^3}+....=frac{1}{1-(1/2)}=2$
$endgroup$
add a comment |
$begingroup$
$k(x,t)=k_1(x,t)=1$,
$k_2(x,t)=int_{0}^{1/2} k(x,z)k_1(z,t) dz=frac {1}{2}$
$k_3(x,t)=int_{0}^{1/2} k(x,z)k_2(z,t) dz=frac {1}{2^2}$......
$k_n(x,t)=int_{0}^{1/2} k(x,z)k_{n-1}(z,t) dz=frac {1}{2^{n-1}}$
Hence $R(x,t,lambda)=sum_{i=0}^infty lambda^i k_{i+1}(x,t)$
$R(x,t,1)=frac{1}{2}+frac {1}{2^2}+frac {1}{2^3}+....=frac{1}{1-(1/2)}=2$
$endgroup$
$k(x,t)=k_1(x,t)=1$,
$k_2(x,t)=int_{0}^{1/2} k(x,z)k_1(z,t) dz=frac {1}{2}$
$k_3(x,t)=int_{0}^{1/2} k(x,z)k_2(z,t) dz=frac {1}{2^2}$......
$k_n(x,t)=int_{0}^{1/2} k(x,z)k_{n-1}(z,t) dz=frac {1}{2^{n-1}}$
Hence $R(x,t,lambda)=sum_{i=0}^infty lambda^i k_{i+1}(x,t)$
$R(x,t,1)=frac{1}{2}+frac {1}{2^2}+frac {1}{2^3}+....=frac{1}{1-(1/2)}=2$
answered Dec 24 '18 at 8:27
ASHWINI SANKHEASHWINI SANKHE
12710
12710
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2793948%2fresolvent-kernel-of-fredholm-integral-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown