Completing the square to decompose quadratic forms in three variables
up vote
0
down vote
favorite
Given the quadratic form $Q(textbf{x}) = x^2 + 2xy - 4xz +2yz -4z^2$, the question asks to decompose $Q$ into sums of squares, first by eliminating terms in $z$, then terms in $y$, and then terms in $x$.
I know the signature of $Q$ is $(2,1)$ from the solution, but I'm at a loss for how to actually perform what the question is asking. For instance, I recognize that I can take the terms in $x$ and $z$ and form $(x-2z)^2$, but I don't really see what to do next. Any suggestions?
real-analysis quadratic-forms
add a comment |
up vote
0
down vote
favorite
Given the quadratic form $Q(textbf{x}) = x^2 + 2xy - 4xz +2yz -4z^2$, the question asks to decompose $Q$ into sums of squares, first by eliminating terms in $z$, then terms in $y$, and then terms in $x$.
I know the signature of $Q$ is $(2,1)$ from the solution, but I'm at a loss for how to actually perform what the question is asking. For instance, I recognize that I can take the terms in $x$ and $z$ and form $(x-2z)^2$, but I don't really see what to do next. Any suggestions?
real-analysis quadratic-forms
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
Nov 19 at 20:09
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Given the quadratic form $Q(textbf{x}) = x^2 + 2xy - 4xz +2yz -4z^2$, the question asks to decompose $Q$ into sums of squares, first by eliminating terms in $z$, then terms in $y$, and then terms in $x$.
I know the signature of $Q$ is $(2,1)$ from the solution, but I'm at a loss for how to actually perform what the question is asking. For instance, I recognize that I can take the terms in $x$ and $z$ and form $(x-2z)^2$, but I don't really see what to do next. Any suggestions?
real-analysis quadratic-forms
Given the quadratic form $Q(textbf{x}) = x^2 + 2xy - 4xz +2yz -4z^2$, the question asks to decompose $Q$ into sums of squares, first by eliminating terms in $z$, then terms in $y$, and then terms in $x$.
I know the signature of $Q$ is $(2,1)$ from the solution, but I'm at a loss for how to actually perform what the question is asking. For instance, I recognize that I can take the terms in $x$ and $z$ and form $(x-2z)^2$, but I don't really see what to do next. Any suggestions?
real-analysis quadratic-forms
real-analysis quadratic-forms
asked Nov 19 at 20:04
Matt Swanson
132
132
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
Nov 19 at 20:09
add a comment |
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
Nov 19 at 20:09
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
Nov 19 at 20:09
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
Nov 19 at 20:09
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
add a comment |
up vote
0
down vote
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
add a comment |
up vote
0
down vote
up vote
0
down vote
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
answered Nov 19 at 21:41
Will Jagy
101k597198
101k597198
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005447%2fcompleting-the-square-to-decompose-quadratic-forms-in-three-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
Nov 19 at 20:09