Expression of $n$-form with two charts.
Let $(U , varphi)$ and $(V , psi)$ be two charts on a $n$-dimensional differentiable manifold $M$, with $U cap V neq emptyset$, such that $varphi = (x_1 , ldots , x_n)$ and $psi = (y_1 , ldots , y_n)$. We have two elements in ${Lambda}^n(T_pM)$ ($p in U cap V$):
$$
{(d x_1)}_p wedge ldots wedge {(d x_n)}_p qquad mbox{ and } qquad {(d y_1)}_p wedge ldots wedge {(d y_n)}_pmbox{.}
$$
How can I show that
$$
{(d y_1)}_p wedge ldots wedge {(d y_n)}_p = left(det d {(psi circ {varphi}^{- 1})}_{varphi(p)}right) {(d x_1)}_p wedge ldots wedge {(d x_n)}_p?
$$
I have got the equality
$$
{(d y_1)}_p wedge ldots wedge {(d y_n)}_p = lambda(p) {(d x_1)}_p wedge ldots wedge {(d x_n)}_pmbox{,}
$$
where
$$
lambda(p) = det {left({(d y_i)}_p {left(frac{partial}{partial x_j}right)}_pright)}_{i , j = 1}^nmbox{.}
$$
I am using the notation ${left{{left(frac{partial}{partial x_i}right)}_pright}}_{i = 1}^n$ basis for $T_pM$ (using the chart $(U , varphi)$) and ${{{(d y_i)}_p}}_{i = 1}^n$ dual basis of ${left{{left(frac{partial}{partial y_i}right)}_pright}}_{i = 1}^n$ for $T_p^*M$ ($= {(T_pM)}^*$).
How can I show that $lambda(p) = det d {(psi circ {varphi}^{- 1})}_{varphi(p)}$?
manifolds differential-forms
add a comment |
Let $(U , varphi)$ and $(V , psi)$ be two charts on a $n$-dimensional differentiable manifold $M$, with $U cap V neq emptyset$, such that $varphi = (x_1 , ldots , x_n)$ and $psi = (y_1 , ldots , y_n)$. We have two elements in ${Lambda}^n(T_pM)$ ($p in U cap V$):
$$
{(d x_1)}_p wedge ldots wedge {(d x_n)}_p qquad mbox{ and } qquad {(d y_1)}_p wedge ldots wedge {(d y_n)}_pmbox{.}
$$
How can I show that
$$
{(d y_1)}_p wedge ldots wedge {(d y_n)}_p = left(det d {(psi circ {varphi}^{- 1})}_{varphi(p)}right) {(d x_1)}_p wedge ldots wedge {(d x_n)}_p?
$$
I have got the equality
$$
{(d y_1)}_p wedge ldots wedge {(d y_n)}_p = lambda(p) {(d x_1)}_p wedge ldots wedge {(d x_n)}_pmbox{,}
$$
where
$$
lambda(p) = det {left({(d y_i)}_p {left(frac{partial}{partial x_j}right)}_pright)}_{i , j = 1}^nmbox{.}
$$
I am using the notation ${left{{left(frac{partial}{partial x_i}right)}_pright}}_{i = 1}^n$ basis for $T_pM$ (using the chart $(U , varphi)$) and ${{{(d y_i)}_p}}_{i = 1}^n$ dual basis of ${left{{left(frac{partial}{partial y_i}right)}_pright}}_{i = 1}^n$ for $T_p^*M$ ($= {(T_pM)}^*$).
How can I show that $lambda(p) = det d {(psi circ {varphi}^{- 1})}_{varphi(p)}$?
manifolds differential-forms
add a comment |
Let $(U , varphi)$ and $(V , psi)$ be two charts on a $n$-dimensional differentiable manifold $M$, with $U cap V neq emptyset$, such that $varphi = (x_1 , ldots , x_n)$ and $psi = (y_1 , ldots , y_n)$. We have two elements in ${Lambda}^n(T_pM)$ ($p in U cap V$):
$$
{(d x_1)}_p wedge ldots wedge {(d x_n)}_p qquad mbox{ and } qquad {(d y_1)}_p wedge ldots wedge {(d y_n)}_pmbox{.}
$$
How can I show that
$$
{(d y_1)}_p wedge ldots wedge {(d y_n)}_p = left(det d {(psi circ {varphi}^{- 1})}_{varphi(p)}right) {(d x_1)}_p wedge ldots wedge {(d x_n)}_p?
$$
I have got the equality
$$
{(d y_1)}_p wedge ldots wedge {(d y_n)}_p = lambda(p) {(d x_1)}_p wedge ldots wedge {(d x_n)}_pmbox{,}
$$
where
$$
lambda(p) = det {left({(d y_i)}_p {left(frac{partial}{partial x_j}right)}_pright)}_{i , j = 1}^nmbox{.}
$$
I am using the notation ${left{{left(frac{partial}{partial x_i}right)}_pright}}_{i = 1}^n$ basis for $T_pM$ (using the chart $(U , varphi)$) and ${{{(d y_i)}_p}}_{i = 1}^n$ dual basis of ${left{{left(frac{partial}{partial y_i}right)}_pright}}_{i = 1}^n$ for $T_p^*M$ ($= {(T_pM)}^*$).
How can I show that $lambda(p) = det d {(psi circ {varphi}^{- 1})}_{varphi(p)}$?
manifolds differential-forms
Let $(U , varphi)$ and $(V , psi)$ be two charts on a $n$-dimensional differentiable manifold $M$, with $U cap V neq emptyset$, such that $varphi = (x_1 , ldots , x_n)$ and $psi = (y_1 , ldots , y_n)$. We have two elements in ${Lambda}^n(T_pM)$ ($p in U cap V$):
$$
{(d x_1)}_p wedge ldots wedge {(d x_n)}_p qquad mbox{ and } qquad {(d y_1)}_p wedge ldots wedge {(d y_n)}_pmbox{.}
$$
How can I show that
$$
{(d y_1)}_p wedge ldots wedge {(d y_n)}_p = left(det d {(psi circ {varphi}^{- 1})}_{varphi(p)}right) {(d x_1)}_p wedge ldots wedge {(d x_n)}_p?
$$
I have got the equality
$$
{(d y_1)}_p wedge ldots wedge {(d y_n)}_p = lambda(p) {(d x_1)}_p wedge ldots wedge {(d x_n)}_pmbox{,}
$$
where
$$
lambda(p) = det {left({(d y_i)}_p {left(frac{partial}{partial x_j}right)}_pright)}_{i , j = 1}^nmbox{.}
$$
I am using the notation ${left{{left(frac{partial}{partial x_i}right)}_pright}}_{i = 1}^n$ basis for $T_pM$ (using the chart $(U , varphi)$) and ${{{(d y_i)}_p}}_{i = 1}^n$ dual basis of ${left{{left(frac{partial}{partial y_i}right)}_pright}}_{i = 1}^n$ for $T_p^*M$ ($= {(T_pM)}^*$).
How can I show that $lambda(p) = det d {(psi circ {varphi}^{- 1})}_{varphi(p)}$?
manifolds differential-forms
manifolds differential-forms
asked Nov 25 at 15:04
joseabp91
1,243411
1,243411
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012949%2fexpression-of-n-form-with-two-charts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012949%2fexpression-of-n-form-with-two-charts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown