Fibonacci sequence/recurrence relation (limits)












0














Let $lbrace F_nrbrace_{n in mathbb{N_0}}$ be the Fibonacci sequence.



$F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$ and start values $F_0:=0$ and $F_1:=1$.



How to determine:



$limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$?



I used:



If $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$ then



$a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}=limlimits_{ntoinfty}frac{F_n}{F_n+F_{n-1}}$



Here I don't know how to continue.










share|cite|improve this question





























    0














    Let $lbrace F_nrbrace_{n in mathbb{N_0}}$ be the Fibonacci sequence.



    $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$ and start values $F_0:=0$ and $F_1:=1$.



    How to determine:



    $limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$?



    I used:



    If $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$ then



    $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}=limlimits_{ntoinfty}frac{F_n}{F_n+F_{n-1}}$



    Here I don't know how to continue.










    share|cite|improve this question



























      0












      0








      0







      Let $lbrace F_nrbrace_{n in mathbb{N_0}}$ be the Fibonacci sequence.



      $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$ and start values $F_0:=0$ and $F_1:=1$.



      How to determine:



      $limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$?



      I used:



      If $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$ then



      $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}=limlimits_{ntoinfty}frac{F_n}{F_n+F_{n-1}}$



      Here I don't know how to continue.










      share|cite|improve this question















      Let $lbrace F_nrbrace_{n in mathbb{N_0}}$ be the Fibonacci sequence.



      $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$ and start values $F_0:=0$ and $F_1:=1$.



      How to determine:



      $limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$?



      I used:



      If $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}$ then



      $a=limlimits_{ntoinfty}frac{F_n}{F_{n+1}}=limlimits_{ntoinfty}frac{F_n}{F_n+F_{n-1}}$



      Here I don't know how to continue.







      limits recurrence-relations fibonacci-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 25 at 18:05

























      asked Nov 25 at 15:07









      Nekarts

      234




      234






















          3 Answers
          3






          active

          oldest

          votes


















          2














          Assign a variable to the first limit, such as $x$.



          $$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$



          By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.



          $$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$



          $$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$



          $$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$



          If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.



          $$1 + x =frac{1}{x}$$



          $$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$



          Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.






          share|cite|improve this answer































            0














            HINT



            Solve the recurrence analytically, the characteristic polynomial would be
            $$
            x^2-x-1=0
            $$

            and its roots $r,R$ would produce
            $$
            F_n = Ar^n + BR^n...
            $$






            share|cite|improve this answer





























              0














              Using Binet's formula:
              $$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
              because:
              $$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
              because:
              $$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$






              share|cite|improve this answer





















                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012953%2ffibonacci-sequence-recurrence-relation-limits%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2














                Assign a variable to the first limit, such as $x$.



                $$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$



                By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.



                $$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$



                $$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$



                $$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$



                If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.



                $$1 + x =frac{1}{x}$$



                $$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$



                Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.






                share|cite|improve this answer




























                  2














                  Assign a variable to the first limit, such as $x$.



                  $$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$



                  By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.



                  $$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$



                  $$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$



                  $$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$



                  If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.



                  $$1 + x =frac{1}{x}$$



                  $$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$



                  Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.






                  share|cite|improve this answer


























                    2












                    2








                    2






                    Assign a variable to the first limit, such as $x$.



                    $$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$



                    By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.



                    $$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$



                    $$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$



                    $$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$



                    If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.



                    $$1 + x =frac{1}{x}$$



                    $$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$



                    Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.






                    share|cite|improve this answer














                    Assign a variable to the first limit, such as $x$.



                    $$lim_{ntoinfty}frac{F_n}{F_{n+1}} = x$$



                    By definition, $F_{n+1} = F_n+F_{n-1}$, so rewrite the limit.



                    $$lim_{ntoinfty}frac{F_n}{F_{n}+F_{n-1}} = x$$



                    $$lim_{ntoinfty}frac{F_{n}+F_{n-1}}{F_n} = frac{1}{x}$$



                    $$1+lim_{ntoinfty} frac{F_{n-1}}{F_n} = frac{1}{x}$$



                    If $lim_limits{ntoinfty}frac{F_n}{F_{n+1}} = x$, then $lim_limits{n to infty} frac{F_{n-1}}{F_n} = x$ as well.



                    $$1 + x =frac{1}{x}$$



                    $$x+x^2 = 1 implies x^2+x-1 = 0 implies x = frac{-1pmsqrt{5}}{2}$$



                    Now, it's clear that only $x = frac{-1+sqrt{5}}{2}$ applies here, so $x = frac{1}{φ}$, or the reciprocal of the golden ratio. The interesting thing is that this does not apply specifically to the Fibonacci sequence, but for Fibonacci-like sequences in general.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Nov 25 at 15:26

























                    answered Nov 25 at 15:17









                    KM101

                    4,043417




                    4,043417























                        0














                        HINT



                        Solve the recurrence analytically, the characteristic polynomial would be
                        $$
                        x^2-x-1=0
                        $$

                        and its roots $r,R$ would produce
                        $$
                        F_n = Ar^n + BR^n...
                        $$






                        share|cite|improve this answer


























                          0














                          HINT



                          Solve the recurrence analytically, the characteristic polynomial would be
                          $$
                          x^2-x-1=0
                          $$

                          and its roots $r,R$ would produce
                          $$
                          F_n = Ar^n + BR^n...
                          $$






                          share|cite|improve this answer
























                            0












                            0








                            0






                            HINT



                            Solve the recurrence analytically, the characteristic polynomial would be
                            $$
                            x^2-x-1=0
                            $$

                            and its roots $r,R$ would produce
                            $$
                            F_n = Ar^n + BR^n...
                            $$






                            share|cite|improve this answer












                            HINT



                            Solve the recurrence analytically, the characteristic polynomial would be
                            $$
                            x^2-x-1=0
                            $$

                            and its roots $r,R$ would produce
                            $$
                            F_n = Ar^n + BR^n...
                            $$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 25 at 15:12









                            gt6989b

                            32.8k22452




                            32.8k22452























                                0














                                Using Binet's formula:
                                $$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
                                because:
                                $$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
                                because:
                                $$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$






                                share|cite|improve this answer


























                                  0














                                  Using Binet's formula:
                                  $$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
                                  because:
                                  $$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
                                  because:
                                  $$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$






                                  share|cite|improve this answer
























                                    0












                                    0








                                    0






                                    Using Binet's formula:
                                    $$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
                                    because:
                                    $$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
                                    because:
                                    $$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$






                                    share|cite|improve this answer












                                    Using Binet's formula:
                                    $$lim_{ntoinfty} frac{F_n}{F_{n+1}}=lim_{ntoinfty} frac{frac1{sqrt{5}}left(varphi^n-phi^nright)}{frac1{sqrt{5}}left(varphi^{n+1}-phi^{n+1}right)}=lim_{ntoinfty} frac{varphi^nleft(1-frac{phi^n}{varphi^n}right)}{varphi^{n+1}left(1-frac{phi^{n+1}}{varphi^{n+1}}right)}=frac1{varphi},$$
                                    because:
                                    $$lim_{ntoinfty} left(frac{phi}{varphi}right)^n=0,$$
                                    because:
                                    $$left|frac{phi}{varphi}right|=left|frac{frac{1-sqrt{5}}{2}}{frac{1+sqrt{5}}{2}}right|=left|frac{3-sqrt{5}}{-2}right|approx 0.38<1.$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Nov 25 at 15:47









                                    farruhota

                                    18.9k2736




                                    18.9k2736






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.





                                        Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                        Please pay close attention to the following guidance:


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012953%2ffibonacci-sequence-recurrence-relation-limits%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Bundesstraße 106

                                        Verónica Boquete

                                        Ida-Boy-Ed-Garten