How does author derives $nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$?











up vote
1
down vote

favorite












In the book of Classical Mechanics by Golstein, at page 11, it is given that




When the forces are all conservative, the second term in Eq. (1.29) can be rewritten as a sum over pairs of particles, the terms for each pair being of the form
$$
-int_1^2(nabla_i V_{ij} cdot d{bf s}_i + nabla_j V_{ij} cdot d{bf s}_j)
$$

If the difference vector ${bf r}_i - {bf r}_j$ is denoted by ${bf r}_{ij}$ and $nabla_{ij}$ stands for the gradient with respect to ${bf r}_{ij}$, then
$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$




However, I cannot understand how does the author concludes the equality



$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    In the book of Classical Mechanics by Golstein, at page 11, it is given that




    When the forces are all conservative, the second term in Eq. (1.29) can be rewritten as a sum over pairs of particles, the terms for each pair being of the form
    $$
    -int_1^2(nabla_i V_{ij} cdot d{bf s}_i + nabla_j V_{ij} cdot d{bf s}_j)
    $$

    If the difference vector ${bf r}_i - {bf r}_j$ is denoted by ${bf r}_{ij}$ and $nabla_{ij}$ stands for the gradient with respect to ${bf r}_{ij}$, then
    $$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$




    However, I cannot understand how does the author concludes the equality



    $$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      In the book of Classical Mechanics by Golstein, at page 11, it is given that




      When the forces are all conservative, the second term in Eq. (1.29) can be rewritten as a sum over pairs of particles, the terms for each pair being of the form
      $$
      -int_1^2(nabla_i V_{ij} cdot d{bf s}_i + nabla_j V_{ij} cdot d{bf s}_j)
      $$

      If the difference vector ${bf r}_i - {bf r}_j$ is denoted by ${bf r}_{ij}$ and $nabla_{ij}$ stands for the gradient with respect to ${bf r}_{ij}$, then
      $$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$




      However, I cannot understand how does the author concludes the equality



      $$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$










      share|cite|improve this question















      In the book of Classical Mechanics by Golstein, at page 11, it is given that




      When the forces are all conservative, the second term in Eq. (1.29) can be rewritten as a sum over pairs of particles, the terms for each pair being of the form
      $$
      -int_1^2(nabla_i V_{ij} cdot d{bf s}_i + nabla_j V_{ij} cdot d{bf s}_j)
      $$

      If the difference vector ${bf r}_i - {bf r}_j$ is denoted by ${bf r}_{ij}$ and $nabla_{ij}$ stands for the gradient with respect to ${bf r}_{ij}$, then
      $$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$




      However, I cannot understand how does the author concludes the equality



      $$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$







      real-analysis analysis partial-derivative classical-mechanics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 24 at 10:39









      caverac

      12.8k21028




      12.8k21028










      asked Nov 24 at 10:27









      onurcanbektas

      3,3251936




      3,3251936






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so



          $$
          frac{partial V_{ij}}{partial {bf x}_j} =
          frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
          = frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
          -frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Similarly



          $$
          frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Or in Goldstein's notation



          $$
          nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
          $$






          share|cite|improve this answer





















          • Thanks both for the answer and the edit to the question.
            – onurcanbektas
            Nov 24 at 10:40










          • @onurcanbektas Happy to help
            – caverac
            Nov 24 at 10:40











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011398%2fhow-does-author-derives-nabla-i-v-ij-nabla-ij-v-ij-nabla-j-v-ji%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          0
          down vote



          accepted










          Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so



          $$
          frac{partial V_{ij}}{partial {bf x}_j} =
          frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
          = frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
          -frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Similarly



          $$
          frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Or in Goldstein's notation



          $$
          nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
          $$






          share|cite|improve this answer





















          • Thanks both for the answer and the edit to the question.
            – onurcanbektas
            Nov 24 at 10:40










          • @onurcanbektas Happy to help
            – caverac
            Nov 24 at 10:40















          up vote
          0
          down vote



          accepted










          Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so



          $$
          frac{partial V_{ij}}{partial {bf x}_j} =
          frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
          = frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
          -frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Similarly



          $$
          frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Or in Goldstein's notation



          $$
          nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
          $$






          share|cite|improve this answer





















          • Thanks both for the answer and the edit to the question.
            – onurcanbektas
            Nov 24 at 10:40










          • @onurcanbektas Happy to help
            – caverac
            Nov 24 at 10:40













          up vote
          0
          down vote



          accepted







          up vote
          0
          down vote



          accepted






          Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so



          $$
          frac{partial V_{ij}}{partial {bf x}_j} =
          frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
          = frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
          -frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Similarly



          $$
          frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Or in Goldstein's notation



          $$
          nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
          $$






          share|cite|improve this answer












          Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so



          $$
          frac{partial V_{ij}}{partial {bf x}_j} =
          frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
          = frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
          -frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Similarly



          $$
          frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
          $$



          Or in Goldstein's notation



          $$
          nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 24 at 10:32









          caverac

          12.8k21028




          12.8k21028












          • Thanks both for the answer and the edit to the question.
            – onurcanbektas
            Nov 24 at 10:40










          • @onurcanbektas Happy to help
            – caverac
            Nov 24 at 10:40


















          • Thanks both for the answer and the edit to the question.
            – onurcanbektas
            Nov 24 at 10:40










          • @onurcanbektas Happy to help
            – caverac
            Nov 24 at 10:40
















          Thanks both for the answer and the edit to the question.
          – onurcanbektas
          Nov 24 at 10:40




          Thanks both for the answer and the edit to the question.
          – onurcanbektas
          Nov 24 at 10:40












          @onurcanbektas Happy to help
          – caverac
          Nov 24 at 10:40




          @onurcanbektas Happy to help
          – caverac
          Nov 24 at 10:40


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011398%2fhow-does-author-derives-nabla-i-v-ij-nabla-ij-v-ij-nabla-j-v-ji%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten