How does author derives $nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$?
up vote
1
down vote
favorite
In the book of Classical Mechanics by Golstein, at page 11, it is given that
When the forces are all conservative, the second term in Eq. (1.29) can be rewritten as a sum over pairs of particles, the terms for each pair being of the form
$$
-int_1^2(nabla_i V_{ij} cdot d{bf s}_i + nabla_j V_{ij} cdot d{bf s}_j)
$$
If the difference vector ${bf r}_i - {bf r}_j$ is denoted by ${bf r}_{ij}$ and $nabla_{ij}$ stands for the gradient with respect to ${bf r}_{ij}$, then
$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$
However, I cannot understand how does the author concludes the equality
$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$
real-analysis analysis partial-derivative classical-mechanics
add a comment |
up vote
1
down vote
favorite
In the book of Classical Mechanics by Golstein, at page 11, it is given that
When the forces are all conservative, the second term in Eq. (1.29) can be rewritten as a sum over pairs of particles, the terms for each pair being of the form
$$
-int_1^2(nabla_i V_{ij} cdot d{bf s}_i + nabla_j V_{ij} cdot d{bf s}_j)
$$
If the difference vector ${bf r}_i - {bf r}_j$ is denoted by ${bf r}_{ij}$ and $nabla_{ij}$ stands for the gradient with respect to ${bf r}_{ij}$, then
$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$
However, I cannot understand how does the author concludes the equality
$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$
real-analysis analysis partial-derivative classical-mechanics
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
In the book of Classical Mechanics by Golstein, at page 11, it is given that
When the forces are all conservative, the second term in Eq. (1.29) can be rewritten as a sum over pairs of particles, the terms for each pair being of the form
$$
-int_1^2(nabla_i V_{ij} cdot d{bf s}_i + nabla_j V_{ij} cdot d{bf s}_j)
$$
If the difference vector ${bf r}_i - {bf r}_j$ is denoted by ${bf r}_{ij}$ and $nabla_{ij}$ stands for the gradient with respect to ${bf r}_{ij}$, then
$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$
However, I cannot understand how does the author concludes the equality
$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$
real-analysis analysis partial-derivative classical-mechanics
In the book of Classical Mechanics by Golstein, at page 11, it is given that
When the forces are all conservative, the second term in Eq. (1.29) can be rewritten as a sum over pairs of particles, the terms for each pair being of the form
$$
-int_1^2(nabla_i V_{ij} cdot d{bf s}_i + nabla_j V_{ij} cdot d{bf s}_j)
$$
If the difference vector ${bf r}_i - {bf r}_j$ is denoted by ${bf r}_{ij}$ and $nabla_{ij}$ stands for the gradient with respect to ${bf r}_{ij}$, then
$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$
However, I cannot understand how does the author concludes the equality
$$nabla_i V_{ij} = nabla_{ij} V_{ij} = - nabla_j V_{ji}$$
real-analysis analysis partial-derivative classical-mechanics
real-analysis analysis partial-derivative classical-mechanics
edited Nov 24 at 10:39
caverac
12.8k21028
12.8k21028
asked Nov 24 at 10:27
onurcanbektas
3,3251936
3,3251936
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so
$$
frac{partial V_{ij}}{partial {bf x}_j} =
frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
= frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
-frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Similarly
$$
frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Or in Goldstein's notation
$$
nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
$$
Thanks both for the answer and the edit to the question.
– onurcanbektas
Nov 24 at 10:40
@onurcanbektas Happy to help
– caverac
Nov 24 at 10:40
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011398%2fhow-does-author-derives-nabla-i-v-ij-nabla-ij-v-ij-nabla-j-v-ji%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so
$$
frac{partial V_{ij}}{partial {bf x}_j} =
frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
= frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
-frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Similarly
$$
frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Or in Goldstein's notation
$$
nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
$$
Thanks both for the answer and the edit to the question.
– onurcanbektas
Nov 24 at 10:40
@onurcanbektas Happy to help
– caverac
Nov 24 at 10:40
add a comment |
up vote
0
down vote
accepted
Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so
$$
frac{partial V_{ij}}{partial {bf x}_j} =
frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
= frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
-frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Similarly
$$
frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Or in Goldstein's notation
$$
nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
$$
Thanks both for the answer and the edit to the question.
– onurcanbektas
Nov 24 at 10:40
@onurcanbektas Happy to help
– caverac
Nov 24 at 10:40
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so
$$
frac{partial V_{ij}}{partial {bf x}_j} =
frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
= frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
-frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Similarly
$$
frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Or in Goldstein's notation
$$
nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
$$
Because the potential $V_{ij}$ depends on the difference ${bf x}_{ij} = {bf x}_i - {bf x}_j$, so
$$
frac{partial V_{ij}}{partial {bf x}_j} =
frac{partial {bf x}_{ij}}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}}
= frac{partial ({bf x}_i - {bf x}_j)}{partial {bf x}_j} frac{partial V_{ij}}{partial {bf x}_{ij}} =
-frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Similarly
$$
frac{partial V_{ij}}{partial {bf x}_i} = +frac{partial V_{ij}}{partial {bf x}_{ij}}
$$
Or in Goldstein's notation
$$
nabla_i V_{ij} = nabla_{ij} V_{ij} = -nabla_j V_{ij}
$$
answered Nov 24 at 10:32
caverac
12.8k21028
12.8k21028
Thanks both for the answer and the edit to the question.
– onurcanbektas
Nov 24 at 10:40
@onurcanbektas Happy to help
– caverac
Nov 24 at 10:40
add a comment |
Thanks both for the answer and the edit to the question.
– onurcanbektas
Nov 24 at 10:40
@onurcanbektas Happy to help
– caverac
Nov 24 at 10:40
Thanks both for the answer and the edit to the question.
– onurcanbektas
Nov 24 at 10:40
Thanks both for the answer and the edit to the question.
– onurcanbektas
Nov 24 at 10:40
@onurcanbektas Happy to help
– caverac
Nov 24 at 10:40
@onurcanbektas Happy to help
– caverac
Nov 24 at 10:40
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011398%2fhow-does-author-derives-nabla-i-v-ij-nabla-ij-v-ij-nabla-j-v-ji%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown