Show that set of all cusp classes is finite.











up vote
0
down vote

favorite












A cusp $κ$ of a congruence subgroup $Γ le SL_2(mathbb{Z})$ is by definition an element of $mathbb{Q}∪{{i∞}}$. In mapping $κ to frac{aκ+b}{cκ+d}$ if we take $κ=a/b in mathbb{Q}$ then $A=begin{pmatrix}x&y\-b&aend{pmatrix} in SL_2(mathbb{Z})$ maps $κ to i∞$.



On the other hand index of $Γ$ in $SL_2(mathbb{Z})$ is finite, say $SL_2(mathbb{Z}) = ΓA_1 cup dots ΓA_l$.



How to complete of the following?




Show that the set of all cusp classes $(mathbb{Q}∪{{i∞}})/Γ$ is finite.




Regarding the definition of Γ :




A subgroup $Γ ⊂ SL(2, Z)$ is called a congruence subgroup iff it contains a suitable principal congruence subgroup $Γ[q]$, i.e. $Γ[q] ⊂ Γ ⊂ Γ[1]$ in which $$ Gamma(q)=Big{M=begin{pmatrix}
a &b\
c& d
end{pmatrix}in SL(2,mathbb{Z}) | a equiv d equiv 1 bmod q text{and} b equiv c equiv 0 bmod q Big}.$$











share|cite|improve this question
























  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Aloizio Macedo
    Nov 24 at 13:11















up vote
0
down vote

favorite












A cusp $κ$ of a congruence subgroup $Γ le SL_2(mathbb{Z})$ is by definition an element of $mathbb{Q}∪{{i∞}}$. In mapping $κ to frac{aκ+b}{cκ+d}$ if we take $κ=a/b in mathbb{Q}$ then $A=begin{pmatrix}x&y\-b&aend{pmatrix} in SL_2(mathbb{Z})$ maps $κ to i∞$.



On the other hand index of $Γ$ in $SL_2(mathbb{Z})$ is finite, say $SL_2(mathbb{Z}) = ΓA_1 cup dots ΓA_l$.



How to complete of the following?




Show that the set of all cusp classes $(mathbb{Q}∪{{i∞}})/Γ$ is finite.




Regarding the definition of Γ :




A subgroup $Γ ⊂ SL(2, Z)$ is called a congruence subgroup iff it contains a suitable principal congruence subgroup $Γ[q]$, i.e. $Γ[q] ⊂ Γ ⊂ Γ[1]$ in which $$ Gamma(q)=Big{M=begin{pmatrix}
a &b\
c& d
end{pmatrix}in SL(2,mathbb{Z}) | a equiv d equiv 1 bmod q text{and} b equiv c equiv 0 bmod q Big}.$$











share|cite|improve this question
























  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Aloizio Macedo
    Nov 24 at 13:11













up vote
0
down vote

favorite









up vote
0
down vote

favorite











A cusp $κ$ of a congruence subgroup $Γ le SL_2(mathbb{Z})$ is by definition an element of $mathbb{Q}∪{{i∞}}$. In mapping $κ to frac{aκ+b}{cκ+d}$ if we take $κ=a/b in mathbb{Q}$ then $A=begin{pmatrix}x&y\-b&aend{pmatrix} in SL_2(mathbb{Z})$ maps $κ to i∞$.



On the other hand index of $Γ$ in $SL_2(mathbb{Z})$ is finite, say $SL_2(mathbb{Z}) = ΓA_1 cup dots ΓA_l$.



How to complete of the following?




Show that the set of all cusp classes $(mathbb{Q}∪{{i∞}})/Γ$ is finite.




Regarding the definition of Γ :




A subgroup $Γ ⊂ SL(2, Z)$ is called a congruence subgroup iff it contains a suitable principal congruence subgroup $Γ[q]$, i.e. $Γ[q] ⊂ Γ ⊂ Γ[1]$ in which $$ Gamma(q)=Big{M=begin{pmatrix}
a &b\
c& d
end{pmatrix}in SL(2,mathbb{Z}) | a equiv d equiv 1 bmod q text{and} b equiv c equiv 0 bmod q Big}.$$











share|cite|improve this question















A cusp $κ$ of a congruence subgroup $Γ le SL_2(mathbb{Z})$ is by definition an element of $mathbb{Q}∪{{i∞}}$. In mapping $κ to frac{aκ+b}{cκ+d}$ if we take $κ=a/b in mathbb{Q}$ then $A=begin{pmatrix}x&y\-b&aend{pmatrix} in SL_2(mathbb{Z})$ maps $κ to i∞$.



On the other hand index of $Γ$ in $SL_2(mathbb{Z})$ is finite, say $SL_2(mathbb{Z}) = ΓA_1 cup dots ΓA_l$.



How to complete of the following?




Show that the set of all cusp classes $(mathbb{Q}∪{{i∞}})/Γ$ is finite.




Regarding the definition of Γ :




A subgroup $Γ ⊂ SL(2, Z)$ is called a congruence subgroup iff it contains a suitable principal congruence subgroup $Γ[q]$, i.e. $Γ[q] ⊂ Γ ⊂ Γ[1]$ in which $$ Gamma(q)=Big{M=begin{pmatrix}
a &b\
c& d
end{pmatrix}in SL(2,mathbb{Z}) | a equiv d equiv 1 bmod q text{and} b equiv c equiv 0 bmod q Big}.$$








abstract-algebra proof-verification proof-explanation modular-forms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 23 at 20:34

























asked Nov 23 at 19:39









72D

541116




541116












  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Aloizio Macedo
    Nov 24 at 13:11


















  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Aloizio Macedo
    Nov 24 at 13:11
















Comments are not for extended discussion; this conversation has been moved to chat.
– Aloizio Macedo
Nov 24 at 13:11




Comments are not for extended discussion; this conversation has been moved to chat.
– Aloizio Macedo
Nov 24 at 13:11















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010751%2fshow-that-set-of-all-cusp-classes-is-finite%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010751%2fshow-that-set-of-all-cusp-classes-is-finite%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bundesstraße 106

Verónica Boquete

Ida-Boy-Ed-Garten