Find T(v) using the standard matrix and the matrix relative to B and B'












0












$begingroup$


Find T(V) by using the standard matrix and the matrix relative to B and B'



$T: R^3 -> R^2, T(x,y,z) = (x-y + 0, 0 + y-z), v = (2,4,6)$
$B = {(1,1,1), (1,1,0), (0,1,1)}$
$B' = {(1,1),(2,1)}$



Standard Matrix Way



A = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix}$



$T(v)$ = $Av$ = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix} begin{bmatrix}2 \ 4 \ 6end{bmatrix}$

= $begin{bmatrix}-2 \ -2 end{bmatrix}$



Matrix relative to B and B' Matrix



$T(v_1) = T(1,1,1) = (1, -1, 0) + (0, 1, -1) = (1,0, -1)$
$T(v_2) = T(1,1,0) = (1, -1, 0) + (0, 1, 0) = (1, 0, 0)$
$T(v_3) = T(0,1,1) = (0, -1, 0) + (0, 1, -1) = (0, 0, -1)$
$T(v)$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix}$



$[v]_B$ = $2(1,1,1) + 4(1,1,0) + 6(0,1,1)$ = $(2,2,2) + (4,4,0) + (0,6,6)$
$[v]_B$ = $(6,14,8)$



$[T(v)]_B$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix} begin{bmatrix}6 \ 14 \ 8end{bmatrix}$ = $begin{bmatrix}20 \ 0 \-14end{bmatrix}$



Obviously this is not the right answer, both should come out to be (-2,-2). What am I doing wrong?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
    $endgroup$
    – Wolfgang Bangerth
    Dec 4 '18 at 15:01










  • $begingroup$
    The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
    $endgroup$
    – Evan Kim
    Dec 4 '18 at 15:12


















0












$begingroup$


Find T(V) by using the standard matrix and the matrix relative to B and B'



$T: R^3 -> R^2, T(x,y,z) = (x-y + 0, 0 + y-z), v = (2,4,6)$
$B = {(1,1,1), (1,1,0), (0,1,1)}$
$B' = {(1,1),(2,1)}$



Standard Matrix Way



A = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix}$



$T(v)$ = $Av$ = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix} begin{bmatrix}2 \ 4 \ 6end{bmatrix}$

= $begin{bmatrix}-2 \ -2 end{bmatrix}$



Matrix relative to B and B' Matrix



$T(v_1) = T(1,1,1) = (1, -1, 0) + (0, 1, -1) = (1,0, -1)$
$T(v_2) = T(1,1,0) = (1, -1, 0) + (0, 1, 0) = (1, 0, 0)$
$T(v_3) = T(0,1,1) = (0, -1, 0) + (0, 1, -1) = (0, 0, -1)$
$T(v)$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix}$



$[v]_B$ = $2(1,1,1) + 4(1,1,0) + 6(0,1,1)$ = $(2,2,2) + (4,4,0) + (0,6,6)$
$[v]_B$ = $(6,14,8)$



$[T(v)]_B$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix} begin{bmatrix}6 \ 14 \ 8end{bmatrix}$ = $begin{bmatrix}20 \ 0 \-14end{bmatrix}$



Obviously this is not the right answer, both should come out to be (-2,-2). What am I doing wrong?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
    $endgroup$
    – Wolfgang Bangerth
    Dec 4 '18 at 15:01










  • $begingroup$
    The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
    $endgroup$
    – Evan Kim
    Dec 4 '18 at 15:12
















0












0








0





$begingroup$


Find T(V) by using the standard matrix and the matrix relative to B and B'



$T: R^3 -> R^2, T(x,y,z) = (x-y + 0, 0 + y-z), v = (2,4,6)$
$B = {(1,1,1), (1,1,0), (0,1,1)}$
$B' = {(1,1),(2,1)}$



Standard Matrix Way



A = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix}$



$T(v)$ = $Av$ = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix} begin{bmatrix}2 \ 4 \ 6end{bmatrix}$

= $begin{bmatrix}-2 \ -2 end{bmatrix}$



Matrix relative to B and B' Matrix



$T(v_1) = T(1,1,1) = (1, -1, 0) + (0, 1, -1) = (1,0, -1)$
$T(v_2) = T(1,1,0) = (1, -1, 0) + (0, 1, 0) = (1, 0, 0)$
$T(v_3) = T(0,1,1) = (0, -1, 0) + (0, 1, -1) = (0, 0, -1)$
$T(v)$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix}$



$[v]_B$ = $2(1,1,1) + 4(1,1,0) + 6(0,1,1)$ = $(2,2,2) + (4,4,0) + (0,6,6)$
$[v]_B$ = $(6,14,8)$



$[T(v)]_B$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix} begin{bmatrix}6 \ 14 \ 8end{bmatrix}$ = $begin{bmatrix}20 \ 0 \-14end{bmatrix}$



Obviously this is not the right answer, both should come out to be (-2,-2). What am I doing wrong?










share|cite|improve this question









$endgroup$




Find T(V) by using the standard matrix and the matrix relative to B and B'



$T: R^3 -> R^2, T(x,y,z) = (x-y + 0, 0 + y-z), v = (2,4,6)$
$B = {(1,1,1), (1,1,0), (0,1,1)}$
$B' = {(1,1),(2,1)}$



Standard Matrix Way



A = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix}$



$T(v)$ = $Av$ = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix} begin{bmatrix}2 \ 4 \ 6end{bmatrix}$

= $begin{bmatrix}-2 \ -2 end{bmatrix}$



Matrix relative to B and B' Matrix



$T(v_1) = T(1,1,1) = (1, -1, 0) + (0, 1, -1) = (1,0, -1)$
$T(v_2) = T(1,1,0) = (1, -1, 0) + (0, 1, 0) = (1, 0, 0)$
$T(v_3) = T(0,1,1) = (0, -1, 0) + (0, 1, -1) = (0, 0, -1)$
$T(v)$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix}$



$[v]_B$ = $2(1,1,1) + 4(1,1,0) + 6(0,1,1)$ = $(2,2,2) + (4,4,0) + (0,6,6)$
$[v]_B$ = $(6,14,8)$



$[T(v)]_B$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix} begin{bmatrix}6 \ 14 \ 8end{bmatrix}$ = $begin{bmatrix}20 \ 0 \-14end{bmatrix}$



Obviously this is not the right answer, both should come out to be (-2,-2). What am I doing wrong?







linear-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 4 '18 at 14:54









Evan KimEvan Kim

998




998








  • 1




    $begingroup$
    Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
    $endgroup$
    – Wolfgang Bangerth
    Dec 4 '18 at 15:01










  • $begingroup$
    The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
    $endgroup$
    – Evan Kim
    Dec 4 '18 at 15:12
















  • 1




    $begingroup$
    Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
    $endgroup$
    – Wolfgang Bangerth
    Dec 4 '18 at 15:01










  • $begingroup$
    The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
    $endgroup$
    – Evan Kim
    Dec 4 '18 at 15:12










1




1




$begingroup$
Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
$endgroup$
– Wolfgang Bangerth
Dec 4 '18 at 15:01




$begingroup$
Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
$endgroup$
– Wolfgang Bangerth
Dec 4 '18 at 15:01












$begingroup$
The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
$endgroup$
– Evan Kim
Dec 4 '18 at 15:12






$begingroup$
The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
$endgroup$
– Evan Kim
Dec 4 '18 at 15:12












1 Answer
1






active

oldest

votes


















1












$begingroup$

You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.



So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.



Note $[T]_B^{B'}$ should be $2×3$.



Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.



So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.



Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025677%2ffind-tv-using-the-standard-matrix-and-the-matrix-relative-to-b-and-b%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.



    So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
    So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.



    Note $[T]_B^{B'}$ should be $2×3$.



    Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.



    So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.



    Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.



      So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
      So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.



      Note $[T]_B^{B'}$ should be $2×3$.



      Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.



      So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.



      Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.



        So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
        So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.



        Note $[T]_B^{B'}$ should be $2×3$.



        Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.



        So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.



        Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.






        share|cite|improve this answer









        $endgroup$



        You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.



        So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
        So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.



        Note $[T]_B^{B'}$ should be $2×3$.



        Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.



        So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.



        Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 4 '18 at 18:08









        Chris CusterChris Custer

        11.6k3824




        11.6k3824






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025677%2ffind-tv-using-the-standard-matrix-and-the-matrix-relative-to-b-and-b%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Le Mesnil-Réaume

            Ida-Boy-Ed-Garten

            web3.py web3.isConnected() returns false always