Find T(v) using the standard matrix and the matrix relative to B and B'
$begingroup$
Find T(V) by using the standard matrix and the matrix relative to B and B'
$T: R^3 -> R^2, T(x,y,z) = (x-y + 0, 0 + y-z), v = (2,4,6)$
$B = {(1,1,1), (1,1,0), (0,1,1)}$
$B' = {(1,1),(2,1)}$
Standard Matrix Way
A = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix}$
$T(v)$ = $Av$ = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix} begin{bmatrix}2 \ 4 \ 6end{bmatrix}$
= $begin{bmatrix}-2 \ -2 end{bmatrix}$
Matrix relative to B and B' Matrix
$T(v_1) = T(1,1,1) = (1, -1, 0) + (0, 1, -1) = (1,0, -1)$
$T(v_2) = T(1,1,0) = (1, -1, 0) + (0, 1, 0) = (1, 0, 0)$
$T(v_3) = T(0,1,1) = (0, -1, 0) + (0, 1, -1) = (0, 0, -1)$
$T(v)$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix}$
$[v]_B$ = $2(1,1,1) + 4(1,1,0) + 6(0,1,1)$ = $(2,2,2) + (4,4,0) + (0,6,6)$
$[v]_B$ = $(6,14,8)$
$[T(v)]_B$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix} begin{bmatrix}6 \ 14 \ 8end{bmatrix}$ = $begin{bmatrix}20 \ 0 \-14end{bmatrix}$
Obviously this is not the right answer, both should come out to be (-2,-2). What am I doing wrong?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Find T(V) by using the standard matrix and the matrix relative to B and B'
$T: R^3 -> R^2, T(x,y,z) = (x-y + 0, 0 + y-z), v = (2,4,6)$
$B = {(1,1,1), (1,1,0), (0,1,1)}$
$B' = {(1,1),(2,1)}$
Standard Matrix Way
A = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix}$
$T(v)$ = $Av$ = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix} begin{bmatrix}2 \ 4 \ 6end{bmatrix}$
= $begin{bmatrix}-2 \ -2 end{bmatrix}$
Matrix relative to B and B' Matrix
$T(v_1) = T(1,1,1) = (1, -1, 0) + (0, 1, -1) = (1,0, -1)$
$T(v_2) = T(1,1,0) = (1, -1, 0) + (0, 1, 0) = (1, 0, 0)$
$T(v_3) = T(0,1,1) = (0, -1, 0) + (0, 1, -1) = (0, 0, -1)$
$T(v)$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix}$
$[v]_B$ = $2(1,1,1) + 4(1,1,0) + 6(0,1,1)$ = $(2,2,2) + (4,4,0) + (0,6,6)$
$[v]_B$ = $(6,14,8)$
$[T(v)]_B$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix} begin{bmatrix}6 \ 14 \ 8end{bmatrix}$ = $begin{bmatrix}20 \ 0 \-14end{bmatrix}$
Obviously this is not the right answer, both should come out to be (-2,-2). What am I doing wrong?
linear-algebra
$endgroup$
1
$begingroup$
Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
$endgroup$
– Wolfgang Bangerth
Dec 4 '18 at 15:01
$begingroup$
The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
$endgroup$
– Evan Kim
Dec 4 '18 at 15:12
add a comment |
$begingroup$
Find T(V) by using the standard matrix and the matrix relative to B and B'
$T: R^3 -> R^2, T(x,y,z) = (x-y + 0, 0 + y-z), v = (2,4,6)$
$B = {(1,1,1), (1,1,0), (0,1,1)}$
$B' = {(1,1),(2,1)}$
Standard Matrix Way
A = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix}$
$T(v)$ = $Av$ = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix} begin{bmatrix}2 \ 4 \ 6end{bmatrix}$
= $begin{bmatrix}-2 \ -2 end{bmatrix}$
Matrix relative to B and B' Matrix
$T(v_1) = T(1,1,1) = (1, -1, 0) + (0, 1, -1) = (1,0, -1)$
$T(v_2) = T(1,1,0) = (1, -1, 0) + (0, 1, 0) = (1, 0, 0)$
$T(v_3) = T(0,1,1) = (0, -1, 0) + (0, 1, -1) = (0, 0, -1)$
$T(v)$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix}$
$[v]_B$ = $2(1,1,1) + 4(1,1,0) + 6(0,1,1)$ = $(2,2,2) + (4,4,0) + (0,6,6)$
$[v]_B$ = $(6,14,8)$
$[T(v)]_B$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix} begin{bmatrix}6 \ 14 \ 8end{bmatrix}$ = $begin{bmatrix}20 \ 0 \-14end{bmatrix}$
Obviously this is not the right answer, both should come out to be (-2,-2). What am I doing wrong?
linear-algebra
$endgroup$
Find T(V) by using the standard matrix and the matrix relative to B and B'
$T: R^3 -> R^2, T(x,y,z) = (x-y + 0, 0 + y-z), v = (2,4,6)$
$B = {(1,1,1), (1,1,0), (0,1,1)}$
$B' = {(1,1),(2,1)}$
Standard Matrix Way
A = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix}$
$T(v)$ = $Av$ = $begin{bmatrix}1&-1&0 \ 0&1&-1end{bmatrix} begin{bmatrix}2 \ 4 \ 6end{bmatrix}$
= $begin{bmatrix}-2 \ -2 end{bmatrix}$
Matrix relative to B and B' Matrix
$T(v_1) = T(1,1,1) = (1, -1, 0) + (0, 1, -1) = (1,0, -1)$
$T(v_2) = T(1,1,0) = (1, -1, 0) + (0, 1, 0) = (1, 0, 0)$
$T(v_3) = T(0,1,1) = (0, -1, 0) + (0, 1, -1) = (0, 0, -1)$
$T(v)$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix}$
$[v]_B$ = $2(1,1,1) + 4(1,1,0) + 6(0,1,1)$ = $(2,2,2) + (4,4,0) + (0,6,6)$
$[v]_B$ = $(6,14,8)$
$[T(v)]_B$ = $begin{bmatrix}1&1&0 \ 0&0&0 \ -1&0&-1end{bmatrix} begin{bmatrix}6 \ 14 \ 8end{bmatrix}$ = $begin{bmatrix}20 \ 0 \-14end{bmatrix}$
Obviously this is not the right answer, both should come out to be (-2,-2). What am I doing wrong?
linear-algebra
linear-algebra
asked Dec 4 '18 at 14:54
Evan KimEvan Kim
998
998
1
$begingroup$
Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
$endgroup$
– Wolfgang Bangerth
Dec 4 '18 at 15:01
$begingroup$
The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
$endgroup$
– Evan Kim
Dec 4 '18 at 15:12
add a comment |
1
$begingroup$
Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
$endgroup$
– Wolfgang Bangerth
Dec 4 '18 at 15:01
$begingroup$
The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
$endgroup$
– Evan Kim
Dec 4 '18 at 15:12
1
1
$begingroup$
Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
$endgroup$
– Wolfgang Bangerth
Dec 4 '18 at 15:01
$begingroup$
Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
$endgroup$
– Wolfgang Bangerth
Dec 4 '18 at 15:01
$begingroup$
The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
$endgroup$
– Evan Kim
Dec 4 '18 at 15:12
$begingroup$
The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
$endgroup$
– Evan Kim
Dec 4 '18 at 15:12
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.
So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.
Note $[T]_B^{B'}$ should be $2×3$.
Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.
So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.
Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025677%2ffind-tv-using-the-standard-matrix-and-the-matrix-relative-to-b-and-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.
So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.
Note $[T]_B^{B'}$ should be $2×3$.
Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.
So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.
Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.
$endgroup$
add a comment |
$begingroup$
You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.
So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.
Note $[T]_B^{B'}$ should be $2×3$.
Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.
So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.
Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.
$endgroup$
add a comment |
$begingroup$
You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.
So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.
Note $[T]_B^{B'}$ should be $2×3$.
Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.
So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.
Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.
$endgroup$
You shouldn't get the same answer: you should get $begin{pmatrix}-2\-2end{pmatrix}$expressed in terms of $beta '$.
So $begin{cases}x+2y=-2\x+y=-2end{cases}$.
So $x=-2,y=0$, that is, $begin{pmatrix}-2\0end{pmatrix}$.
Note $[T]_B^{B'}$ should be $2×3$.
Since $T(1,1,1)=(0,0)=0(1,1)+0(2,1), T(1,1,0)=(0,1)=2(1,1)-1(2,1)$ and $T(0,1,1)=(-1,0)=1(1,1)-1(2,1)$, we get $[T]_B^{B'}=begin{pmatrix}0&2&1\0&-1&-1end{pmatrix}$.
So, $(2,4,6)=4(1,1,1) -2(1,1,0)+2(0,1,1)$. Hence $begin{pmatrix}2\4\6end{pmatrix}_B=begin{pmatrix}4\-2\2end{pmatrix}$.
Finally check that $[T]_B^{B'}[v]_B=begin {pmatrix}-2\0end{pmatrix}=begin{pmatrix}-2\2end{pmatrix}_{B'}$.
answered Dec 4 '18 at 18:08
Chris CusterChris Custer
11.6k3824
11.6k3824
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025677%2ffind-tv-using-the-standard-matrix-and-the-matrix-relative-to-b-and-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Your question has remarkably little detail. You just state a matrix and five points. What is $T(V)$ supposed to be, and what do the "Standard way" and "Matrix relative..." refer to? It's entirely unclear what you are trying to do :-)
$endgroup$
– Wolfgang Bangerth
Dec 4 '18 at 15:01
$begingroup$
The question simply says Find T(v) by using (1) the standard matrix and (2) the matrix relative to B and B'. T(v) is the linear transformation of vector v by multiplying the standard matrix * vector.
$endgroup$
– Evan Kim
Dec 4 '18 at 15:12