Empty elements as dots in matrix
I need to create a determinant (vmatrix) as shown in this picture. So, I wrote a simple LaTEX file for testing purposes as follows:
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdot &cdot &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdot &cdot &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
cdot &cdot &cdot &cdot &cdot &cdot &cdot &cdot \
0 &cdot &cdot &0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdot &cdot &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdot &cdot &0 &alpha_{1} &cdot &cdot &kappa_{1} \
cdot &cdot &cdot &cdot &cdot &cdot &cdot &cdot \
0 &cdot &cdot &-1 &alpha_{n} &cdot &cdot &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
When the above file gets compiled with TeXLive on a Linux desktop computer, it produces the following ugly result: I thought using hdotsfor{}
for the horizontal line, but the spacing between the dots is too close. If there is a simple way to tell hdotsfor{}
to skip every dot, I believe that would do. However, perhaps someone here knows a much better way.
matrices
add a comment |
I need to create a determinant (vmatrix) as shown in this picture. So, I wrote a simple LaTEX file for testing purposes as follows:
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdot &cdot &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdot &cdot &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
cdot &cdot &cdot &cdot &cdot &cdot &cdot &cdot \
0 &cdot &cdot &0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdot &cdot &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdot &cdot &0 &alpha_{1} &cdot &cdot &kappa_{1} \
cdot &cdot &cdot &cdot &cdot &cdot &cdot &cdot \
0 &cdot &cdot &-1 &alpha_{n} &cdot &cdot &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
When the above file gets compiled with TeXLive on a Linux desktop computer, it produces the following ugly result: I thought using hdotsfor{}
for the horizontal line, but the spacing between the dots is too close. If there is a simple way to tell hdotsfor{}
to skip every dot, I believe that would do. However, perhaps someone here knows a much better way.
matrices
hdotsfor
has an optional argument which is a multiplier for the amount of space between consecutive dots, so you could tryhdotsfor[2]{<number of rows>}
. I'm not sure if it'd look good though, since they wouldn't align with the dots in your first row.
– Circumscribe
Dec 8 '18 at 21:47
add a comment |
I need to create a determinant (vmatrix) as shown in this picture. So, I wrote a simple LaTEX file for testing purposes as follows:
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdot &cdot &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdot &cdot &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
cdot &cdot &cdot &cdot &cdot &cdot &cdot &cdot \
0 &cdot &cdot &0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdot &cdot &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdot &cdot &0 &alpha_{1} &cdot &cdot &kappa_{1} \
cdot &cdot &cdot &cdot &cdot &cdot &cdot &cdot \
0 &cdot &cdot &-1 &alpha_{n} &cdot &cdot &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
When the above file gets compiled with TeXLive on a Linux desktop computer, it produces the following ugly result: I thought using hdotsfor{}
for the horizontal line, but the spacing between the dots is too close. If there is a simple way to tell hdotsfor{}
to skip every dot, I believe that would do. However, perhaps someone here knows a much better way.
matrices
I need to create a determinant (vmatrix) as shown in this picture. So, I wrote a simple LaTEX file for testing purposes as follows:
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdot &cdot &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdot &cdot &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
cdot &cdot &cdot &cdot &cdot &cdot &cdot &cdot \
0 &cdot &cdot &0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdot &cdot &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdot &cdot &0 &alpha_{1} &cdot &cdot &kappa_{1} \
cdot &cdot &cdot &cdot &cdot &cdot &cdot &cdot \
0 &cdot &cdot &-1 &alpha_{n} &cdot &cdot &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
When the above file gets compiled with TeXLive on a Linux desktop computer, it produces the following ugly result: I thought using hdotsfor{}
for the horizontal line, but the spacing between the dots is too close. If there is a simple way to tell hdotsfor{}
to skip every dot, I believe that would do. However, perhaps someone here knows a much better way.
matrices
matrices
asked Dec 8 '18 at 21:18
user91822user91822
1425
1425
hdotsfor
has an optional argument which is a multiplier for the amount of space between consecutive dots, so you could tryhdotsfor[2]{<number of rows>}
. I'm not sure if it'd look good though, since they wouldn't align with the dots in your first row.
– Circumscribe
Dec 8 '18 at 21:47
add a comment |
hdotsfor
has an optional argument which is a multiplier for the amount of space between consecutive dots, so you could tryhdotsfor[2]{<number of rows>}
. I'm not sure if it'd look good though, since they wouldn't align with the dots in your first row.
– Circumscribe
Dec 8 '18 at 21:47
hdotsfor
has an optional argument which is a multiplier for the amount of space between consecutive dots, so you could try hdotsfor[2]{<number of rows>}
. I'm not sure if it'd look good though, since they wouldn't align with the dots in your first row.– Circumscribe
Dec 8 '18 at 21:47
hdotsfor
has an optional argument which is a multiplier for the amount of space between consecutive dots, so you could try hdotsfor[2]{<number of rows>}
. I'm not sure if it'd look good though, since they wouldn't align with the dots in your first row.– Circumscribe
Dec 8 '18 at 21:47
add a comment |
4 Answers
4
active
oldest
votes
This seems a good approximation:
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
begin{vmatrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
-1 & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & -1 & alpha_{n} & . & . & kappa_{n}
end{vmatrix}
end{equation*}
end{document}
The value 14tabcolsep
has been determined by first looking at the entries at their natural width.
Even better than the original if we make -1
to hide its width.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
newcommand{?}{makebox[0pt]{$-1$}}
begin{vmatrix}mspace{8mu}
begin{matrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
? & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & ? & alpha_{n} & . & . & kappa_{n}
end{matrix}mspace{3mu}
end{vmatrix}
end{equation*}
end{document}
With dots
and hdotsfor
:
begin{equation*}
newcommand{ak}[2]{a_{#2}#1_1+dots+k_{#2}#1_n}
begin{vmatrix}
0 & dots & 0 & ak{alpha}{1} & dots & ak{kappa}{1} \
hdotsfor{6} \
0 & dots & 0 & ak{alpha}{n} & dots & ak{kappa}{n} \
-1 & dots & 0 & alpha_{1} & dots & kappa_{1} \
hdotsfor{6} \
0 & dots & -1 & alpha_{n} & dots & kappa_{n}
end{vmatrix}
end{equation*}
Although I may not be able to decipher how your code works, it looks like the one with the capability of hiding the with of -1 fits my need. I have a feeling after perusing your code, I will understand better. Thank you.
– user91822
Dec 9 '18 at 0:18
add a comment |
One way is to manually put dots with some horizontal space.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdot &cdot &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdot &cdot &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdot &cdot &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdot &cdot &0 &alpha_{1} &cdot &cdot &kappa_{1} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &-1 &alpha_{n} &cdot &cdot &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
Honestly, I had never thought of using 'hfil'. Thank you for the pointer.
– user91822
Dec 9 '18 at 0:20
add a comment |
Defining two newcommands twodts
and fivedts
for empty columns and rows can simplify the table.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
newcommand{twodts}{begin{tabular}{@{}cc@{}}$cdot$&$cdot$end{tabular}}
newcommand{fivedts}{begin{tabular}{@{}*5{c}@{}}$cdot$&$cdot$&$cdot$&$cdot$&$cdot$end{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
Update:
You can easily adapt my answer to add six dots instead of five like this:
documentclass[a4paper,10pt]{article}
usepackage{amsmath,array}
begin{document}
deftwocdots{$cdot$&$cdot$}
newcommand{twodts}{begin{tabular}{@{}cc@{}}twocdotsend{tabular}}
newcommand{sixdts}{begin{tabular}{@{}*6{c}@{}}twocdots&twocdots&twocdotsend{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
This looks pretty simple and good solution. Since there is still some gaps that seems to be able to put one more dot when using the `fivedts' command, I wonder if this command can be modded to accommodate the gap. I tried to modify with a "sixdots" and it does not work, unfortunately. Anyway, thank you too.
– user91822
Dec 9 '18 at 0:24
Please see my update for doing this.
– AboAmmar
Dec 9 '18 at 16:31
add a comment |
Would this be acceptable?
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdots &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdots &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & 0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdots &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdots &0 &alpha_{1} &cdots &kappa_{1} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & -1 &alpha_{n} &cdots &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
1
This is I usually do and I don't think it will do for me. Sorry and I try to stick closer to the example I posted above. Anyway, thank you.
– user91822
Dec 9 '18 at 0:25
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f463868%2fempty-elements-as-dots-in-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
This seems a good approximation:
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
begin{vmatrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
-1 & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & -1 & alpha_{n} & . & . & kappa_{n}
end{vmatrix}
end{equation*}
end{document}
The value 14tabcolsep
has been determined by first looking at the entries at their natural width.
Even better than the original if we make -1
to hide its width.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
newcommand{?}{makebox[0pt]{$-1$}}
begin{vmatrix}mspace{8mu}
begin{matrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
? & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & ? & alpha_{n} & . & . & kappa_{n}
end{matrix}mspace{3mu}
end{vmatrix}
end{equation*}
end{document}
With dots
and hdotsfor
:
begin{equation*}
newcommand{ak}[2]{a_{#2}#1_1+dots+k_{#2}#1_n}
begin{vmatrix}
0 & dots & 0 & ak{alpha}{1} & dots & ak{kappa}{1} \
hdotsfor{6} \
0 & dots & 0 & ak{alpha}{n} & dots & ak{kappa}{n} \
-1 & dots & 0 & alpha_{1} & dots & kappa_{1} \
hdotsfor{6} \
0 & dots & -1 & alpha_{n} & dots & kappa_{n}
end{vmatrix}
end{equation*}
Although I may not be able to decipher how your code works, it looks like the one with the capability of hiding the with of -1 fits my need. I have a feeling after perusing your code, I will understand better. Thank you.
– user91822
Dec 9 '18 at 0:18
add a comment |
This seems a good approximation:
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
begin{vmatrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
-1 & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & -1 & alpha_{n} & . & . & kappa_{n}
end{vmatrix}
end{equation*}
end{document}
The value 14tabcolsep
has been determined by first looking at the entries at their natural width.
Even better than the original if we make -1
to hide its width.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
newcommand{?}{makebox[0pt]{$-1$}}
begin{vmatrix}mspace{8mu}
begin{matrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
? & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & ? & alpha_{n} & . & . & kappa_{n}
end{matrix}mspace{3mu}
end{vmatrix}
end{equation*}
end{document}
With dots
and hdotsfor
:
begin{equation*}
newcommand{ak}[2]{a_{#2}#1_1+dots+k_{#2}#1_n}
begin{vmatrix}
0 & dots & 0 & ak{alpha}{1} & dots & ak{kappa}{1} \
hdotsfor{6} \
0 & dots & 0 & ak{alpha}{n} & dots & ak{kappa}{n} \
-1 & dots & 0 & alpha_{1} & dots & kappa_{1} \
hdotsfor{6} \
0 & dots & -1 & alpha_{n} & dots & kappa_{n}
end{vmatrix}
end{equation*}
Although I may not be able to decipher how your code works, it looks like the one with the capability of hiding the with of -1 fits my need. I have a feeling after perusing your code, I will understand better. Thank you.
– user91822
Dec 9 '18 at 0:18
add a comment |
This seems a good approximation:
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
begin{vmatrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
-1 & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & -1 & alpha_{n} & . & . & kappa_{n}
end{vmatrix}
end{equation*}
end{document}
The value 14tabcolsep
has been determined by first looking at the entries at their natural width.
Even better than the original if we make -1
to hide its width.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
newcommand{?}{makebox[0pt]{$-1$}}
begin{vmatrix}mspace{8mu}
begin{matrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
? & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & ? & alpha_{n} & . & . & kappa_{n}
end{matrix}mspace{3mu}
end{vmatrix}
end{equation*}
end{document}
With dots
and hdotsfor
:
begin{equation*}
newcommand{ak}[2]{a_{#2}#1_1+dots+k_{#2}#1_n}
begin{vmatrix}
0 & dots & 0 & ak{alpha}{1} & dots & ak{kappa}{1} \
hdotsfor{6} \
0 & dots & 0 & ak{alpha}{n} & dots & ak{kappa}{n} \
-1 & dots & 0 & alpha_{1} & dots & kappa_{1} \
hdotsfor{6} \
0 & dots & -1 & alpha_{n} & dots & kappa_{n}
end{vmatrix}
end{equation*}
This seems a good approximation:
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
begin{vmatrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
-1 & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & -1 & alpha_{n} & . & . & kappa_{n}
end{vmatrix}
end{equation*}
end{document}
The value 14tabcolsep
has been determined by first looking at the entries at their natural width.
Even better than the original if we make -1
to hide its width.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
newcommand{widedots}{%
.cleadershbox to 2tabcolsep{hss.hss}hfill.%
hspace*{0pt}%
}
begin{document}
begin{equation*}
newcommand{ak}[2]{%
makebox[14tabcolsep][s]{$displaystyle a_{#2}#1_1+dots+k_{#2}#1_n$}%
}
newcommand{?}{makebox[0pt]{$-1$}}
begin{vmatrix}mspace{8mu}
begin{matrix}
0 & . & . & 0 & ak{alpha}{1} & . & . & ak{kappa}{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & 0 & ak{alpha}{n} & . & . & ak{kappa}{n} \
? & . & . & 0 & alpha_{1} & . & . & kappa_{1} \
. & . & . & . & widedots & . & . & widedots \
0 & . & . & ? & alpha_{n} & . & . & kappa_{n}
end{matrix}mspace{3mu}
end{vmatrix}
end{equation*}
end{document}
With dots
and hdotsfor
:
begin{equation*}
newcommand{ak}[2]{a_{#2}#1_1+dots+k_{#2}#1_n}
begin{vmatrix}
0 & dots & 0 & ak{alpha}{1} & dots & ak{kappa}{1} \
hdotsfor{6} \
0 & dots & 0 & ak{alpha}{n} & dots & ak{kappa}{n} \
-1 & dots & 0 & alpha_{1} & dots & kappa_{1} \
hdotsfor{6} \
0 & dots & -1 & alpha_{n} & dots & kappa_{n}
end{vmatrix}
end{equation*}
edited Dec 8 '18 at 22:05
answered Dec 8 '18 at 21:53
egregegreg
719k8719053204
719k8719053204
Although I may not be able to decipher how your code works, it looks like the one with the capability of hiding the with of -1 fits my need. I have a feeling after perusing your code, I will understand better. Thank you.
– user91822
Dec 9 '18 at 0:18
add a comment |
Although I may not be able to decipher how your code works, it looks like the one with the capability of hiding the with of -1 fits my need. I have a feeling after perusing your code, I will understand better. Thank you.
– user91822
Dec 9 '18 at 0:18
Although I may not be able to decipher how your code works, it looks like the one with the capability of hiding the with of -1 fits my need. I have a feeling after perusing your code, I will understand better. Thank you.
– user91822
Dec 9 '18 at 0:18
Although I may not be able to decipher how your code works, it looks like the one with the capability of hiding the with of -1 fits my need. I have a feeling after perusing your code, I will understand better. Thank you.
– user91822
Dec 9 '18 at 0:18
add a comment |
One way is to manually put dots with some horizontal space.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdot &cdot &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdot &cdot &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdot &cdot &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdot &cdot &0 &alpha_{1} &cdot &cdot &kappa_{1} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &-1 &alpha_{n} &cdot &cdot &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
Honestly, I had never thought of using 'hfil'. Thank you for the pointer.
– user91822
Dec 9 '18 at 0:20
add a comment |
One way is to manually put dots with some horizontal space.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdot &cdot &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdot &cdot &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdot &cdot &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdot &cdot &0 &alpha_{1} &cdot &cdot &kappa_{1} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &-1 &alpha_{n} &cdot &cdot &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
Honestly, I had never thought of using 'hfil'. Thank you for the pointer.
– user91822
Dec 9 '18 at 0:20
add a comment |
One way is to manually put dots with some horizontal space.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdot &cdot &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdot &cdot &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdot &cdot &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdot &cdot &0 &alpha_{1} &cdot &cdot &kappa_{1} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &-1 &alpha_{n} &cdot &cdot &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
One way is to manually put dots with some horizontal space.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdot &cdot &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdot &cdot &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdot &cdot &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdot &cdot &0 &alpha_{1} &cdot &cdot &kappa_{1} \
cdot &cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot &cdot &cdot &cdot hfil hfil cdot hfil cdot hfil cdot hfil cdot \
0 &cdot &cdot &-1 &alpha_{n} &cdot &cdot &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
answered Dec 8 '18 at 21:33
nidhinnidhin
3,3521927
3,3521927
Honestly, I had never thought of using 'hfil'. Thank you for the pointer.
– user91822
Dec 9 '18 at 0:20
add a comment |
Honestly, I had never thought of using 'hfil'. Thank you for the pointer.
– user91822
Dec 9 '18 at 0:20
Honestly, I had never thought of using 'hfil'. Thank you for the pointer.
– user91822
Dec 9 '18 at 0:20
Honestly, I had never thought of using 'hfil'. Thank you for the pointer.
– user91822
Dec 9 '18 at 0:20
add a comment |
Defining two newcommands twodts
and fivedts
for empty columns and rows can simplify the table.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
newcommand{twodts}{begin{tabular}{@{}cc@{}}$cdot$&$cdot$end{tabular}}
newcommand{fivedts}{begin{tabular}{@{}*5{c}@{}}$cdot$&$cdot$&$cdot$&$cdot$&$cdot$end{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
Update:
You can easily adapt my answer to add six dots instead of five like this:
documentclass[a4paper,10pt]{article}
usepackage{amsmath,array}
begin{document}
deftwocdots{$cdot$&$cdot$}
newcommand{twodts}{begin{tabular}{@{}cc@{}}twocdotsend{tabular}}
newcommand{sixdts}{begin{tabular}{@{}*6{c}@{}}twocdots&twocdots&twocdotsend{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
This looks pretty simple and good solution. Since there is still some gaps that seems to be able to put one more dot when using the `fivedts' command, I wonder if this command can be modded to accommodate the gap. I tried to modify with a "sixdots" and it does not work, unfortunately. Anyway, thank you too.
– user91822
Dec 9 '18 at 0:24
Please see my update for doing this.
– AboAmmar
Dec 9 '18 at 16:31
add a comment |
Defining two newcommands twodts
and fivedts
for empty columns and rows can simplify the table.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
newcommand{twodts}{begin{tabular}{@{}cc@{}}$cdot$&$cdot$end{tabular}}
newcommand{fivedts}{begin{tabular}{@{}*5{c}@{}}$cdot$&$cdot$&$cdot$&$cdot$&$cdot$end{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
Update:
You can easily adapt my answer to add six dots instead of five like this:
documentclass[a4paper,10pt]{article}
usepackage{amsmath,array}
begin{document}
deftwocdots{$cdot$&$cdot$}
newcommand{twodts}{begin{tabular}{@{}cc@{}}twocdotsend{tabular}}
newcommand{sixdts}{begin{tabular}{@{}*6{c}@{}}twocdots&twocdots&twocdotsend{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
This looks pretty simple and good solution. Since there is still some gaps that seems to be able to put one more dot when using the `fivedts' command, I wonder if this command can be modded to accommodate the gap. I tried to modify with a "sixdots" and it does not work, unfortunately. Anyway, thank you too.
– user91822
Dec 9 '18 at 0:24
Please see my update for doing this.
– AboAmmar
Dec 9 '18 at 16:31
add a comment |
Defining two newcommands twodts
and fivedts
for empty columns and rows can simplify the table.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
newcommand{twodts}{begin{tabular}{@{}cc@{}}$cdot$&$cdot$end{tabular}}
newcommand{fivedts}{begin{tabular}{@{}*5{c}@{}}$cdot$&$cdot$&$cdot$&$cdot$&$cdot$end{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
Update:
You can easily adapt my answer to add six dots instead of five like this:
documentclass[a4paper,10pt]{article}
usepackage{amsmath,array}
begin{document}
deftwocdots{$cdot$&$cdot$}
newcommand{twodts}{begin{tabular}{@{}cc@{}}twocdotsend{tabular}}
newcommand{sixdts}{begin{tabular}{@{}*6{c}@{}}twocdots&twocdots&twocdotsend{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
Defining two newcommands twodts
and fivedts
for empty columns and rows can simplify the table.
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
newcommand{twodts}{begin{tabular}{@{}cc@{}}$cdot$&$cdot$end{tabular}}
newcommand{fivedts}{begin{tabular}{@{}*5{c}@{}}$cdot$&$cdot$&$cdot$&$cdot$&$cdot$end{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & fivedts & twodts & fivedts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
Update:
You can easily adapt my answer to add six dots instead of five like this:
documentclass[a4paper,10pt]{article}
usepackage{amsmath,array}
begin{document}
deftwocdots{$cdot$&$cdot$}
newcommand{twodts}{begin{tabular}{@{}cc@{}}twocdotsend{tabular}}
newcommand{sixdts}{begin{tabular}{@{}*6{c}@{}}twocdots&twocdots&twocdotsend{tabular}}
begin{equation*}
begin{array}{|cccccc|}
0 & twodts & 0 & a_1 alpha_1+ cdots +k_1 alpha_n & twodts & a_1 kappa_1+ cdots +k_1 kappa_n \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & 0 & a_n alpha_1+ cdots +k_n alpha_n & twodts & a_n kappa_1+ cdots +k_n kappa_n \
-1 & twodts & 0 & alpha_1 & twodts & kappa_1 \
cdot & twodts & cdot & sixdts & twodts & sixdts \
0 & twodts & -1 & alpha_n & twodts & kappa_n
end{array}
end{equation*}
end{document}
edited Dec 9 '18 at 16:29
answered Dec 8 '18 at 22:19
AboAmmarAboAmmar
33.6k22883
33.6k22883
This looks pretty simple and good solution. Since there is still some gaps that seems to be able to put one more dot when using the `fivedts' command, I wonder if this command can be modded to accommodate the gap. I tried to modify with a "sixdots" and it does not work, unfortunately. Anyway, thank you too.
– user91822
Dec 9 '18 at 0:24
Please see my update for doing this.
– AboAmmar
Dec 9 '18 at 16:31
add a comment |
This looks pretty simple and good solution. Since there is still some gaps that seems to be able to put one more dot when using the `fivedts' command, I wonder if this command can be modded to accommodate the gap. I tried to modify with a "sixdots" and it does not work, unfortunately. Anyway, thank you too.
– user91822
Dec 9 '18 at 0:24
Please see my update for doing this.
– AboAmmar
Dec 9 '18 at 16:31
This looks pretty simple and good solution. Since there is still some gaps that seems to be able to put one more dot when using the `fivedts' command, I wonder if this command can be modded to accommodate the gap. I tried to modify with a "sixdots" and it does not work, unfortunately. Anyway, thank you too.
– user91822
Dec 9 '18 at 0:24
This looks pretty simple and good solution. Since there is still some gaps that seems to be able to put one more dot when using the `fivedts' command, I wonder if this command can be modded to accommodate the gap. I tried to modify with a "sixdots" and it does not work, unfortunately. Anyway, thank you too.
– user91822
Dec 9 '18 at 0:24
Please see my update for doing this.
– AboAmmar
Dec 9 '18 at 16:31
Please see my update for doing this.
– AboAmmar
Dec 9 '18 at 16:31
add a comment |
Would this be acceptable?
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdots &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdots &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & 0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdots &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdots &0 &alpha_{1} &cdots &kappa_{1} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & -1 &alpha_{n} &cdots &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
1
This is I usually do and I don't think it will do for me. Sorry and I try to stick closer to the example I posted above. Anyway, thank you.
– user91822
Dec 9 '18 at 0:25
add a comment |
Would this be acceptable?
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdots &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdots &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & 0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdots &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdots &0 &alpha_{1} &cdots &kappa_{1} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & -1 &alpha_{n} &cdots &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
1
This is I usually do and I don't think it will do for me. Sorry and I try to stick closer to the example I posted above. Anyway, thank you.
– user91822
Dec 9 '18 at 0:25
add a comment |
Would this be acceptable?
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdots &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdots &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & 0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdots &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdots &0 &alpha_{1} &cdots &kappa_{1} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & -1 &alpha_{n} &cdots &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
Would this be acceptable?
documentclass[a4paper,10pt]{article}
usepackage{amsmath}
begin{document}
begin{equation*}
begin{vmatrix}
0 &cdots &0 &a_{1} alpha_{1}+ cdots +k_{1} alpha_{n} &cdots &a_{1} kappa_{1}+ cdots +k_{1} kappa_{n} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & 0 &a_{n} alpha_{1}+ cdots +k_{n} alpha_{n} &cdots &a_{n} kappa_{1}+ cdots +k_{n} kappa_{n} \
-1 &cdots &0 &alpha_{1} &cdots &kappa_{1} \
vdots &ddots &vdots &vdots &ddots &vdots \
0 &cdots & -1 &alpha_{n} &cdots &kappa_{n}
end{vmatrix}
end{equation*}
end{document}
answered Dec 8 '18 at 21:52
prt13463prt13463
1407
1407
1
This is I usually do and I don't think it will do for me. Sorry and I try to stick closer to the example I posted above. Anyway, thank you.
– user91822
Dec 9 '18 at 0:25
add a comment |
1
This is I usually do and I don't think it will do for me. Sorry and I try to stick closer to the example I posted above. Anyway, thank you.
– user91822
Dec 9 '18 at 0:25
1
1
This is I usually do and I don't think it will do for me. Sorry and I try to stick closer to the example I posted above. Anyway, thank you.
– user91822
Dec 9 '18 at 0:25
This is I usually do and I don't think it will do for me. Sorry and I try to stick closer to the example I posted above. Anyway, thank you.
– user91822
Dec 9 '18 at 0:25
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f463868%2fempty-elements-as-dots-in-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
hdotsfor
has an optional argument which is a multiplier for the amount of space between consecutive dots, so you could tryhdotsfor[2]{<number of rows>}
. I'm not sure if it'd look good though, since they wouldn't align with the dots in your first row.– Circumscribe
Dec 8 '18 at 21:47