Find PMF of X^2 if X~Dunif(0,1,…,n)
$begingroup$
Follow up on this: Find PMF of $X^2$ if $X$~Dunif
(I do not have enough "reputation points" to comment, so if this is an inappropriate way to ask for a follow up, please let me know)
Is this a correct way to solve:
$Y=X^2$
X~DUnif(0,1,...,n)
- Find the PMF relating X and y:
$F_Y(y) = P(Y<y) = P(X^2<y) = P(X<sqrt{y})$
- Find CDF given X is DUnif:
$F_X(sqrt{(y)}) = int_0^{sqrt{y}}frac{1}{n}dx = frac{sqrt{y}}{n}$
- Take derivative to find PDF:
$frac{1}{2nsqrt{y}}$
for y in {0,1,...,n}
I think I am missing something due to the squared/square root. Any help?
random-variables uniform-distribution
$endgroup$
add a comment |
$begingroup$
Follow up on this: Find PMF of $X^2$ if $X$~Dunif
(I do not have enough "reputation points" to comment, so if this is an inappropriate way to ask for a follow up, please let me know)
Is this a correct way to solve:
$Y=X^2$
X~DUnif(0,1,...,n)
- Find the PMF relating X and y:
$F_Y(y) = P(Y<y) = P(X^2<y) = P(X<sqrt{y})$
- Find CDF given X is DUnif:
$F_X(sqrt{(y)}) = int_0^{sqrt{y}}frac{1}{n}dx = frac{sqrt{y}}{n}$
- Take derivative to find PDF:
$frac{1}{2nsqrt{y}}$
for y in {0,1,...,n}
I think I am missing something due to the squared/square root. Any help?
random-variables uniform-distribution
$endgroup$
add a comment |
$begingroup$
Follow up on this: Find PMF of $X^2$ if $X$~Dunif
(I do not have enough "reputation points" to comment, so if this is an inappropriate way to ask for a follow up, please let me know)
Is this a correct way to solve:
$Y=X^2$
X~DUnif(0,1,...,n)
- Find the PMF relating X and y:
$F_Y(y) = P(Y<y) = P(X^2<y) = P(X<sqrt{y})$
- Find CDF given X is DUnif:
$F_X(sqrt{(y)}) = int_0^{sqrt{y}}frac{1}{n}dx = frac{sqrt{y}}{n}$
- Take derivative to find PDF:
$frac{1}{2nsqrt{y}}$
for y in {0,1,...,n}
I think I am missing something due to the squared/square root. Any help?
random-variables uniform-distribution
$endgroup$
Follow up on this: Find PMF of $X^2$ if $X$~Dunif
(I do not have enough "reputation points" to comment, so if this is an inappropriate way to ask for a follow up, please let me know)
Is this a correct way to solve:
$Y=X^2$
X~DUnif(0,1,...,n)
- Find the PMF relating X and y:
$F_Y(y) = P(Y<y) = P(X^2<y) = P(X<sqrt{y})$
- Find CDF given X is DUnif:
$F_X(sqrt{(y)}) = int_0^{sqrt{y}}frac{1}{n}dx = frac{sqrt{y}}{n}$
- Take derivative to find PDF:
$frac{1}{2nsqrt{y}}$
for y in {0,1,...,n}
I think I am missing something due to the squared/square root. Any help?
random-variables uniform-distribution
random-variables uniform-distribution
asked Dec 8 '18 at 22:19
user603569user603569
728
728
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $X$ is uniformly distributed over ${0,1,ldots,n}$, then the distribution of $Y=X^2$ is straightforward to determine:
begin{align}
mathbb P(Y=1) &= mathbb P(X=0)+mathbb P(X=1)=frac 2{n+1}\
mathbb P(Y=k^2) &= mathbb P(X=k) = frac1{n+1}, k=2,ldots,n.
end{align}
The distribution function of $Y$ is thus
$$
F_Y(y) = frac2{n+1}mathsf 1_{[1,infty)}(y) + sum_{k=2}^nfrac1{n+1}mathsf 1_{[k^2,infty)}(y).
$$
Taking a derivative does not make sense here since the random variables are not continuous.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031718%2ffind-pmf-of-x2-if-xdunif0-1-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $X$ is uniformly distributed over ${0,1,ldots,n}$, then the distribution of $Y=X^2$ is straightforward to determine:
begin{align}
mathbb P(Y=1) &= mathbb P(X=0)+mathbb P(X=1)=frac 2{n+1}\
mathbb P(Y=k^2) &= mathbb P(X=k) = frac1{n+1}, k=2,ldots,n.
end{align}
The distribution function of $Y$ is thus
$$
F_Y(y) = frac2{n+1}mathsf 1_{[1,infty)}(y) + sum_{k=2}^nfrac1{n+1}mathsf 1_{[k^2,infty)}(y).
$$
Taking a derivative does not make sense here since the random variables are not continuous.
$endgroup$
add a comment |
$begingroup$
If $X$ is uniformly distributed over ${0,1,ldots,n}$, then the distribution of $Y=X^2$ is straightforward to determine:
begin{align}
mathbb P(Y=1) &= mathbb P(X=0)+mathbb P(X=1)=frac 2{n+1}\
mathbb P(Y=k^2) &= mathbb P(X=k) = frac1{n+1}, k=2,ldots,n.
end{align}
The distribution function of $Y$ is thus
$$
F_Y(y) = frac2{n+1}mathsf 1_{[1,infty)}(y) + sum_{k=2}^nfrac1{n+1}mathsf 1_{[k^2,infty)}(y).
$$
Taking a derivative does not make sense here since the random variables are not continuous.
$endgroup$
add a comment |
$begingroup$
If $X$ is uniformly distributed over ${0,1,ldots,n}$, then the distribution of $Y=X^2$ is straightforward to determine:
begin{align}
mathbb P(Y=1) &= mathbb P(X=0)+mathbb P(X=1)=frac 2{n+1}\
mathbb P(Y=k^2) &= mathbb P(X=k) = frac1{n+1}, k=2,ldots,n.
end{align}
The distribution function of $Y$ is thus
$$
F_Y(y) = frac2{n+1}mathsf 1_{[1,infty)}(y) + sum_{k=2}^nfrac1{n+1}mathsf 1_{[k^2,infty)}(y).
$$
Taking a derivative does not make sense here since the random variables are not continuous.
$endgroup$
If $X$ is uniformly distributed over ${0,1,ldots,n}$, then the distribution of $Y=X^2$ is straightforward to determine:
begin{align}
mathbb P(Y=1) &= mathbb P(X=0)+mathbb P(X=1)=frac 2{n+1}\
mathbb P(Y=k^2) &= mathbb P(X=k) = frac1{n+1}, k=2,ldots,n.
end{align}
The distribution function of $Y$ is thus
$$
F_Y(y) = frac2{n+1}mathsf 1_{[1,infty)}(y) + sum_{k=2}^nfrac1{n+1}mathsf 1_{[k^2,infty)}(y).
$$
Taking a derivative does not make sense here since the random variables are not continuous.
answered Dec 8 '18 at 22:29
Math1000Math1000
19.1k31745
19.1k31745
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031718%2ffind-pmf-of-x2-if-xdunif0-1-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown