Half of Vandermonde's Identity












5












$begingroup$


We know Vandermonde's Identity, which states



$sum_{k=0}^{r}{m choose k}{n choose r-k}={m+n choose r}$.



Does anyone know what happens if we walk bigger steps with k? Say we skip all the odd ks, is something like



$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=frac{1}{2} {m+n choose r}$



or at least



$sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=Theta left( frac{1}{2} {m+n choose r}right)$



true?



Maybe someone here has even some general insight on other step widths?



Thank you!










share|cite|improve this question











$endgroup$

















    5












    $begingroup$


    We know Vandermonde's Identity, which states



    $sum_{k=0}^{r}{m choose k}{n choose r-k}={m+n choose r}$.



    Does anyone know what happens if we walk bigger steps with k? Say we skip all the odd ks, is something like



    $sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=frac{1}{2} {m+n choose r}$



    or at least



    $sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=Theta left( frac{1}{2} {m+n choose r}right)$



    true?



    Maybe someone here has even some general insight on other step widths?



    Thank you!










    share|cite|improve this question











    $endgroup$















      5












      5








      5


      0



      $begingroup$


      We know Vandermonde's Identity, which states



      $sum_{k=0}^{r}{m choose k}{n choose r-k}={m+n choose r}$.



      Does anyone know what happens if we walk bigger steps with k? Say we skip all the odd ks, is something like



      $sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=frac{1}{2} {m+n choose r}$



      or at least



      $sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=Theta left( frac{1}{2} {m+n choose r}right)$



      true?



      Maybe someone here has even some general insight on other step widths?



      Thank you!










      share|cite|improve this question











      $endgroup$




      We know Vandermonde's Identity, which states



      $sum_{k=0}^{r}{m choose k}{n choose r-k}={m+n choose r}$.



      Does anyone know what happens if we walk bigger steps with k? Say we skip all the odd ks, is something like



      $sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=frac{1}{2} {m+n choose r}$



      or at least



      $sum_{k=0}^{r/2}{m choose 2k}{n choose r-2k}=Theta left( frac{1}{2} {m+n choose r}right)$



      true?



      Maybe someone here has even some general insight on other step widths?



      Thank you!







      combinatorics analysis binomial-coefficients






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 12 '18 at 23:13







      drix

















      asked Dec 12 '18 at 23:07









      drixdrix

      364




      364






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance



          begin{align*}
          binom{n}{k}=[z^k](1+z)^ntag{1}
          end{align*}




          We assume wlog $ngeq m$ and obtain
          begin{align*}
          color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
          &=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
          &=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
          &=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
          &=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
          &,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
          end{align*}




          Comment:




          • In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.


          • In (3) we use the linearity of the coefficient of operator.


          • In (4) we write the sum as polynomial in closed form.


          • In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.


          • In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.


          • In (7) we select the coefficient of $z^{r-2k}$.







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
            $endgroup$
            – drix
            Dec 14 '18 at 15:16










          • $begingroup$
            @drix: You're welcome. Good to see the answer is helpful.
            $endgroup$
            – Markus Scheuer
            Dec 14 '18 at 15:43



















          1












          $begingroup$

          In general, having the ogf (z-Transform)
          $$
          F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
          $$

          then
          $$
          {1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
          F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
          = sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
          $$



          But unfortunately, the truncated binomial expansion
          $$
          sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
          $$

          does not have in general ($r<n$) a compact closed expression.



          We can go either through the Hypergeometric version
          $$
          sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
          binom{m}{k} binom{n}{r-k},z^{,k} }
          = binom{n}{r} ;{}_2F_{,1} left( {matrix{
          { - m,; - r} cr
          {n - r + 1} cr
          } ;left| {,z} right.} right)
          $$

          or through the double ogf
          $$
          eqalign{
          & G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
          & = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
          & = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
          $$



          Then for instance we have
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
          left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
          $$

          which clearly indicates what is the difference between
          $$
          {1 over 2}binom{n+m}{r}
          quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j} , binom{n}{r-2j} }
          $$



          Of course the complement will be
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you very much! I will have a closer look on your answer this weekend.
            $endgroup$
            – drix
            Dec 14 '18 at 15:18










          • $begingroup$
            it's an interesting subject also for me ! waiting for you feedback.
            $endgroup$
            – G Cab
            Dec 14 '18 at 22:18











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037356%2fhalf-of-vandermondes-identity%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance



          begin{align*}
          binom{n}{k}=[z^k](1+z)^ntag{1}
          end{align*}




          We assume wlog $ngeq m$ and obtain
          begin{align*}
          color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
          &=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
          &=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
          &=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
          &=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
          &,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
          end{align*}




          Comment:




          • In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.


          • In (3) we use the linearity of the coefficient of operator.


          • In (4) we write the sum as polynomial in closed form.


          • In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.


          • In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.


          • In (7) we select the coefficient of $z^{r-2k}$.







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
            $endgroup$
            – drix
            Dec 14 '18 at 15:16










          • $begingroup$
            @drix: You're welcome. Good to see the answer is helpful.
            $endgroup$
            – Markus Scheuer
            Dec 14 '18 at 15:43
















          3












          $begingroup$

          We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance



          begin{align*}
          binom{n}{k}=[z^k](1+z)^ntag{1}
          end{align*}




          We assume wlog $ngeq m$ and obtain
          begin{align*}
          color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
          &=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
          &=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
          &=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
          &=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
          &,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
          end{align*}




          Comment:




          • In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.


          • In (3) we use the linearity of the coefficient of operator.


          • In (4) we write the sum as polynomial in closed form.


          • In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.


          • In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.


          • In (7) we select the coefficient of $z^{r-2k}$.







          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
            $endgroup$
            – drix
            Dec 14 '18 at 15:16










          • $begingroup$
            @drix: You're welcome. Good to see the answer is helpful.
            $endgroup$
            – Markus Scheuer
            Dec 14 '18 at 15:43














          3












          3








          3





          $begingroup$

          We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance



          begin{align*}
          binom{n}{k}=[z^k](1+z)^ntag{1}
          end{align*}




          We assume wlog $ngeq m$ and obtain
          begin{align*}
          color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
          &=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
          &=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
          &=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
          &=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
          &,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
          end{align*}




          Comment:




          • In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.


          • In (3) we use the linearity of the coefficient of operator.


          • In (4) we write the sum as polynomial in closed form.


          • In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.


          • In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.


          • In (7) we select the coefficient of $z^{r-2k}$.







          share|cite|improve this answer











          $endgroup$



          We derive a binomial identity which shows the deviation of OPs sum from $frac{1}{2}binom{m+n}{r}$. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write for instance



          begin{align*}
          binom{n}{k}=[z^k](1+z)^ntag{1}
          end{align*}




          We assume wlog $ngeq m$ and obtain
          begin{align*}
          color{blue}{sum_{k=0}^{r/2}}&color{blue}{binom{m}{2k}binom{n}{r-2k}}\
          &=sum_{kgeq 0}binom{m}{2k}[z^{r-2k}](1+z)^ntag{2}\
          &=[z^r](1+z)^nsum_{kgeq 0}binom{m}{2k}z^{2k}tag{3}\
          &=[z^r](1+z)^nfrac{1}{2}left((1+z)^m+(1-z)^mright)tag{4}\
          &=frac{1}{2}[z^r](1+z)^{m+n}+frac{1}{2}[z^r](1+z)^n(1-z)^m\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r](1-z^2)^m(1+z)^{n-m}tag{5}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}[z^r]sum_{k=0}^{r/2}binom{m}{k}(-1)^kz^{2k}(1+z)^{n-m}\
          &=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}(-1)^k[z^{r-2k}](1+z)^{n-m}tag{6}\
          &,,color{blue}{=frac{1}{2}binom{m+n}{r}+frac{1}{2}sum_{k=0}^{r/2}binom{m}{k}binom{n-m}{r-2k}(-1)^k}tag{7}
          end{align*}




          Comment:




          • In (2) we apply the coefficient of operator as indicated in (1) and we set the upper limit of the sum to $infty$ without changing anything since we are adding zeros only.


          • In (3) we use the linearity of the coefficient of operator.


          • In (4) we write the sum as polynomial in closed form.


          • In (5) we select the coefficient of $z^r$ of the left polynomial and we rewrite the other polynomial keeping in mind that $ngeq m$.


          • In (6) we use the rule $[z^{p-q}]A(z)=[z^p]z^qA(z)$.


          • In (7) we select the coefficient of $z^{r-2k}$.








          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 14 '18 at 6:35

























          answered Dec 13 '18 at 22:30









          Markus ScheuerMarkus Scheuer

          62k458149




          62k458149












          • $begingroup$
            Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
            $endgroup$
            – drix
            Dec 14 '18 at 15:16










          • $begingroup$
            @drix: You're welcome. Good to see the answer is helpful.
            $endgroup$
            – Markus Scheuer
            Dec 14 '18 at 15:43


















          • $begingroup$
            Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
            $endgroup$
            – drix
            Dec 14 '18 at 15:16










          • $begingroup$
            @drix: You're welcome. Good to see the answer is helpful.
            $endgroup$
            – Markus Scheuer
            Dec 14 '18 at 15:43
















          $begingroup$
          Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
          $endgroup$
          – drix
          Dec 14 '18 at 15:16




          $begingroup$
          Thank you very much! I will work my way through your answer on the upcoming weekend. From the first glance I think this might exactly be what I was looking for.
          $endgroup$
          – drix
          Dec 14 '18 at 15:16












          $begingroup$
          @drix: You're welcome. Good to see the answer is helpful.
          $endgroup$
          – Markus Scheuer
          Dec 14 '18 at 15:43




          $begingroup$
          @drix: You're welcome. Good to see the answer is helpful.
          $endgroup$
          – Markus Scheuer
          Dec 14 '18 at 15:43











          1












          $begingroup$

          In general, having the ogf (z-Transform)
          $$
          F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
          $$

          then
          $$
          {1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
          F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
          = sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
          $$



          But unfortunately, the truncated binomial expansion
          $$
          sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
          $$

          does not have in general ($r<n$) a compact closed expression.



          We can go either through the Hypergeometric version
          $$
          sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
          binom{m}{k} binom{n}{r-k},z^{,k} }
          = binom{n}{r} ;{}_2F_{,1} left( {matrix{
          { - m,; - r} cr
          {n - r + 1} cr
          } ;left| {,z} right.} right)
          $$

          or through the double ogf
          $$
          eqalign{
          & G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
          & = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
          & = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
          $$



          Then for instance we have
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
          left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
          $$

          which clearly indicates what is the difference between
          $$
          {1 over 2}binom{n+m}{r}
          quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j} , binom{n}{r-2j} }
          $$



          Of course the complement will be
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you very much! I will have a closer look on your answer this weekend.
            $endgroup$
            – drix
            Dec 14 '18 at 15:18










          • $begingroup$
            it's an interesting subject also for me ! waiting for you feedback.
            $endgroup$
            – G Cab
            Dec 14 '18 at 22:18
















          1












          $begingroup$

          In general, having the ogf (z-Transform)
          $$
          F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
          $$

          then
          $$
          {1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
          F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
          = sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
          $$



          But unfortunately, the truncated binomial expansion
          $$
          sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
          $$

          does not have in general ($r<n$) a compact closed expression.



          We can go either through the Hypergeometric version
          $$
          sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
          binom{m}{k} binom{n}{r-k},z^{,k} }
          = binom{n}{r} ;{}_2F_{,1} left( {matrix{
          { - m,; - r} cr
          {n - r + 1} cr
          } ;left| {,z} right.} right)
          $$

          or through the double ogf
          $$
          eqalign{
          & G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
          & = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
          & = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
          $$



          Then for instance we have
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
          left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
          $$

          which clearly indicates what is the difference between
          $$
          {1 over 2}binom{n+m}{r}
          quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j} , binom{n}{r-2j} }
          $$



          Of course the complement will be
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you very much! I will have a closer look on your answer this weekend.
            $endgroup$
            – drix
            Dec 14 '18 at 15:18










          • $begingroup$
            it's an interesting subject also for me ! waiting for you feedback.
            $endgroup$
            – G Cab
            Dec 14 '18 at 22:18














          1












          1








          1





          $begingroup$

          In general, having the ogf (z-Transform)
          $$
          F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
          $$

          then
          $$
          {1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
          F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
          = sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
          $$



          But unfortunately, the truncated binomial expansion
          $$
          sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
          $$

          does not have in general ($r<n$) a compact closed expression.



          We can go either through the Hypergeometric version
          $$
          sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
          binom{m}{k} binom{n}{r-k},z^{,k} }
          = binom{n}{r} ;{}_2F_{,1} left( {matrix{
          { - m,; - r} cr
          {n - r + 1} cr
          } ;left| {,z} right.} right)
          $$

          or through the double ogf
          $$
          eqalign{
          & G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
          & = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
          & = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
          $$



          Then for instance we have
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
          left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
          $$

          which clearly indicates what is the difference between
          $$
          {1 over 2}binom{n+m}{r}
          quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j} , binom{n}{r-2j} }
          $$



          Of course the complement will be
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
          $$






          share|cite|improve this answer











          $endgroup$



          In general, having the ogf (z-Transform)
          $$
          F(z) = sumlimits_{0, le ;n} {a_{,n} ,z^{,n} }
          $$

          then
          $$
          {1 over m}sumlimits_{0 le ,k, le ,m - 1} {left( {z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} } right)^{,j}
          F(z^{,{1 over m}} ;e^{,i,{{2kpi } over m}} )}
          = sumlimits_{0, le ;n} {,a_{,m;n - j} ,z^{,n} }
          $$



          But unfortunately, the truncated binomial expansion
          $$
          sumlimits_{0, le ;k} {left( matrix{ n cr r - k cr} right),z^{,k} }
          $$

          does not have in general ($r<n$) a compact closed expression.



          We can go either through the Hypergeometric version
          $$
          sumlimits_{left( {0, le } right);k,left( { le ,,r} right)} {
          binom{m}{k} binom{n}{r-k},z^{,k} }
          = binom{n}{r} ;{}_2F_{,1} left( {matrix{
          { - m,; - r} cr
          {n - r + 1} cr
          } ;left| {,z} right.} right)
          $$

          or through the double ogf
          $$
          eqalign{
          & G(x,y,n,m) = sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j},binom{n}{k-j} y^{,j} } } right)x^{,k} } = cr
          & = sumlimits_{left( {0, le } right),j,left( { le ,m} right)} {
          binom{m}{j}left( {x,y} right)^{,j} sumlimits_{left( {j, le } right),k,left( { le ,n} right),} { ,binom{n}{k-j}x^{,k - j} } } = cr
          & = left( {1 + xy} right)^{,m} left( {1 + x} right)^{,n} cr}
          $$



          Then for instance we have
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          left( matrix{ m cr 2j cr} right),left( matrix{ n cr k - 2j cr} right)} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) + G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} + left( {1 - x} right)^{,m} } right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n} left( {1 - x} right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 + x} right)^{,n - m} left( {1 - x^{,2} } right)^{,m} = cr
          & = {1 over 2}left( {1 + x} right)^{,n + m} + {1 over 2}left( {1 - x^{,2} } right)^{,{{n + m} over 2}}
          left( {{{1 + x} over {1 - x}}} right)^{,{{n - m} over 2}} cr}
          $$

          which clearly indicates what is the difference between
          $$
          {1 over 2}binom{n+m}{r}
          quad vsquad sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j} , binom{n}{r-2j} }
          $$



          Of course the complement will be
          $$
          eqalign{
          & sumlimits_{0, le ,k} {left( {sumlimits_{left( {0, le } right),j,left( { le ,leftlfloor {min (m,k)/2} rightrfloor } right);} {
          binom{m}{2j+1} ,binom{n}{k - left( {2j + 1} right)}} } right)x^{,k} } = cr
          & = {1 over 2}left( {G(x,1,n,m) - G(x, - 1,n,m)} right) = cr
          & = {1 over 2}left( {1 + x} right)^{,n} left( {left( {1 + x} right)^{,m} - left( {1 - x} right)^{,m} } right) cr}
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 14 '18 at 22:15

























          answered Dec 13 '18 at 1:31









          G CabG Cab

          19.7k31339




          19.7k31339












          • $begingroup$
            Thank you very much! I will have a closer look on your answer this weekend.
            $endgroup$
            – drix
            Dec 14 '18 at 15:18










          • $begingroup$
            it's an interesting subject also for me ! waiting for you feedback.
            $endgroup$
            – G Cab
            Dec 14 '18 at 22:18


















          • $begingroup$
            Thank you very much! I will have a closer look on your answer this weekend.
            $endgroup$
            – drix
            Dec 14 '18 at 15:18










          • $begingroup$
            it's an interesting subject also for me ! waiting for you feedback.
            $endgroup$
            – G Cab
            Dec 14 '18 at 22:18
















          $begingroup$
          Thank you very much! I will have a closer look on your answer this weekend.
          $endgroup$
          – drix
          Dec 14 '18 at 15:18




          $begingroup$
          Thank you very much! I will have a closer look on your answer this weekend.
          $endgroup$
          – drix
          Dec 14 '18 at 15:18












          $begingroup$
          it's an interesting subject also for me ! waiting for you feedback.
          $endgroup$
          – G Cab
          Dec 14 '18 at 22:18




          $begingroup$
          it's an interesting subject also for me ! waiting for you feedback.
          $endgroup$
          – G Cab
          Dec 14 '18 at 22:18


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037356%2fhalf-of-vandermondes-identity%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten