Square Root Distance from Integers












5












$begingroup$


Given a decimal number k, find the smallest integer n such that the square root of n is within k of an integer. However, the distance should be nonzero - n cannot be a perfect square.



Given k, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1, output the smallest positive integer n such that the difference between the square root of n and the closest integer to the square root of n is less than or equal to k but nonzero.



If i is the closest integer to the square root of n, you are looking for the first n where 0 < |i - sqrt(n)| <= k.



Rules




  • You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.

  • Otherwise, you can assume that k will not cause problems with, for example, floating point rounding.


Test Cases



.9         > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463


Comma separated test case inputs:



0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159


This is code-golf, so shortest answer in bytes wins.










share|improve this question











$endgroup$

















    5












    $begingroup$


    Given a decimal number k, find the smallest integer n such that the square root of n is within k of an integer. However, the distance should be nonzero - n cannot be a perfect square.



    Given k, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1, output the smallest positive integer n such that the difference between the square root of n and the closest integer to the square root of n is less than or equal to k but nonzero.



    If i is the closest integer to the square root of n, you are looking for the first n where 0 < |i - sqrt(n)| <= k.



    Rules




    • You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.

    • Otherwise, you can assume that k will not cause problems with, for example, floating point rounding.


    Test Cases



    .9         > 2
    .5 > 2
    .4 > 3
    .3 > 3
    .25 > 5
    .2 > 8
    .1 > 26
    .05 > 101
    .03 > 288
    .01 > 2501
    .005 > 10001
    .003 > 27888
    .001 > 250001
    .0005 > 1000001
    .0003 > 2778888
    .0001 > 25000001
    .0314159 > 255
    .00314159 > 25599
    .000314159 > 2534463


    Comma separated test case inputs:



    0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159


    This is code-golf, so shortest answer in bytes wins.










    share|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$


      Given a decimal number k, find the smallest integer n such that the square root of n is within k of an integer. However, the distance should be nonzero - n cannot be a perfect square.



      Given k, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1, output the smallest positive integer n such that the difference between the square root of n and the closest integer to the square root of n is less than or equal to k but nonzero.



      If i is the closest integer to the square root of n, you are looking for the first n where 0 < |i - sqrt(n)| <= k.



      Rules




      • You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.

      • Otherwise, you can assume that k will not cause problems with, for example, floating point rounding.


      Test Cases



      .9         > 2
      .5 > 2
      .4 > 3
      .3 > 3
      .25 > 5
      .2 > 8
      .1 > 26
      .05 > 101
      .03 > 288
      .01 > 2501
      .005 > 10001
      .003 > 27888
      .001 > 250001
      .0005 > 1000001
      .0003 > 2778888
      .0001 > 25000001
      .0314159 > 255
      .00314159 > 25599
      .000314159 > 2534463


      Comma separated test case inputs:



      0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159


      This is code-golf, so shortest answer in bytes wins.










      share|improve this question











      $endgroup$




      Given a decimal number k, find the smallest integer n such that the square root of n is within k of an integer. However, the distance should be nonzero - n cannot be a perfect square.



      Given k, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1, output the smallest positive integer n such that the difference between the square root of n and the closest integer to the square root of n is less than or equal to k but nonzero.



      If i is the closest integer to the square root of n, you are looking for the first n where 0 < |i - sqrt(n)| <= k.



      Rules




      • You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.

      • Otherwise, you can assume that k will not cause problems with, for example, floating point rounding.


      Test Cases



      .9         > 2
      .5 > 2
      .4 > 3
      .3 > 3
      .25 > 5
      .2 > 8
      .1 > 26
      .05 > 101
      .03 > 288
      .01 > 2501
      .005 > 10001
      .003 > 27888
      .001 > 250001
      .0005 > 1000001
      .0003 > 2778888
      .0001 > 25000001
      .0314159 > 255
      .00314159 > 25599
      .000314159 > 2534463


      Comma separated test case inputs:



      0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159


      This is code-golf, so shortest answer in bytes wins.







      code-golf number integer






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 23 mins ago







      Stephen

















      asked 1 hour ago









      StephenStephen

      7,38323395




      7,38323395






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          JavaScript (ES7),  51  50 bytes





          f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


          Try it online!



          (fails for the test cases that require too much recursion)





          Non-recursive version,  57  56 bytes





          k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


          Try it online!



          Or for 55 bytes:



          k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


          Try it online!



          (but this one is significantly slower)






          share|improve this answer











          $endgroup$





















            2












            $begingroup$


            Wolfram Language (Mathematica), 36 bytes



            Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


            Try it online!



            Explanation



            The result must be of the form $n^2 pm 1$ for some $n in mathbb{N}$. Solving the inequations $sqrt{n^2+1} - n le k$ and $n - sqrt{n^2+1} le k$, we get $n ge frac{1-k^2}{2k}$ and $n ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.






            share|improve this answer











            $endgroup$





















              1












              $begingroup$


              Japt, 20 bytes



              _¬%1©½-(Z¬%1 a½ <U}a


              Try it online!






              share|improve this answer











              $endgroup$













              • $begingroup$
                21 but faster: _%1©½-(Z%1 a½ <U}a¬²r
                $endgroup$
                – ASCII-only
                4 mins ago













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ifUsing("editor", function () {
              StackExchange.using("externalEditor", function () {
              StackExchange.using("snippets", function () {
              StackExchange.snippets.init();
              });
              });
              }, "code-snippets");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "200"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              JavaScript (ES7),  51  50 bytes





              f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


              Try it online!



              (fails for the test cases that require too much recursion)





              Non-recursive version,  57  56 bytes





              k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


              Try it online!



              Or for 55 bytes:



              k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


              Try it online!



              (but this one is significantly slower)






              share|improve this answer











              $endgroup$


















                2












                $begingroup$

                JavaScript (ES7),  51  50 bytes





                f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


                Try it online!



                (fails for the test cases that require too much recursion)





                Non-recursive version,  57  56 bytes





                k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


                Try it online!



                Or for 55 bytes:



                k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


                Try it online!



                (but this one is significantly slower)






                share|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  JavaScript (ES7),  51  50 bytes





                  f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


                  Try it online!



                  (fails for the test cases that require too much recursion)





                  Non-recursive version,  57  56 bytes





                  k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


                  Try it online!



                  Or for 55 bytes:



                  k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


                  Try it online!



                  (but this one is significantly slower)






                  share|improve this answer











                  $endgroup$



                  JavaScript (ES7),  51  50 bytes





                  f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n


                  Try it online!



                  (fails for the test cases that require too much recursion)





                  Non-recursive version,  57  56 bytes





                  k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}


                  Try it online!



                  Or for 55 bytes:



                  k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)


                  Try it online!



                  (but this one is significantly slower)







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 19 mins ago

























                  answered 53 mins ago









                  ArnauldArnauld

                  76.8k693322




                  76.8k693322























                      2












                      $begingroup$


                      Wolfram Language (Mathematica), 36 bytes



                      Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


                      Try it online!



                      Explanation



                      The result must be of the form $n^2 pm 1$ for some $n in mathbb{N}$. Solving the inequations $sqrt{n^2+1} - n le k$ and $n - sqrt{n^2+1} le k$, we get $n ge frac{1-k^2}{2k}$ and $n ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.






                      share|improve this answer











                      $endgroup$


















                        2












                        $begingroup$


                        Wolfram Language (Mathematica), 36 bytes



                        Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


                        Try it online!



                        Explanation



                        The result must be of the form $n^2 pm 1$ for some $n in mathbb{N}$. Solving the inequations $sqrt{n^2+1} - n le k$ and $n - sqrt{n^2+1} le k$, we get $n ge frac{1-k^2}{2k}$ and $n ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.






                        share|improve this answer











                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$


                          Wolfram Language (Mathematica), 36 bytes



                          Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


                          Try it online!



                          Explanation



                          The result must be of the form $n^2 pm 1$ for some $n in mathbb{N}$. Solving the inequations $sqrt{n^2+1} - n le k$ and $n - sqrt{n^2+1} le k$, we get $n ge frac{1-k^2}{2k}$ and $n ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.






                          share|improve this answer











                          $endgroup$




                          Wolfram Language (Mathematica), 36 bytes



                          Min[⌈(1/#-{1,-1}#)/2⌉^2+{1,-1}]&


                          Try it online!



                          Explanation



                          The result must be of the form $n^2 pm 1$ for some $n in mathbb{N}$. Solving the inequations $sqrt{n^2+1} - n le k$ and $n - sqrt{n^2+1} le k$, we get $n ge frac{1-k^2}{2k}$ and $n ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.







                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 7 mins ago

























                          answered 25 mins ago









                          alephalphaalephalpha

                          21.4k32991




                          21.4k32991























                              1












                              $begingroup$


                              Japt, 20 bytes



                              _¬%1©½-(Z¬%1 a½ <U}a


                              Try it online!






                              share|improve this answer











                              $endgroup$













                              • $begingroup$
                                21 but faster: _%1©½-(Z%1 a½ <U}a¬²r
                                $endgroup$
                                – ASCII-only
                                4 mins ago


















                              1












                              $begingroup$


                              Japt, 20 bytes



                              _¬%1©½-(Z¬%1 a½ <U}a


                              Try it online!






                              share|improve this answer











                              $endgroup$













                              • $begingroup$
                                21 but faster: _%1©½-(Z%1 a½ <U}a¬²r
                                $endgroup$
                                – ASCII-only
                                4 mins ago
















                              1












                              1








                              1





                              $begingroup$


                              Japt, 20 bytes



                              _¬%1©½-(Z¬%1 a½ <U}a


                              Try it online!






                              share|improve this answer











                              $endgroup$




                              Japt, 20 bytes



                              _¬%1©½-(Z¬%1 a½ <U}a


                              Try it online!







                              share|improve this answer














                              share|improve this answer



                              share|improve this answer








                              edited 5 mins ago

























                              answered 34 mins ago









                              ASCII-onlyASCII-only

                              3,3721236




                              3,3721236












                              • $begingroup$
                                21 but faster: _%1©½-(Z%1 a½ <U}a¬²r
                                $endgroup$
                                – ASCII-only
                                4 mins ago




















                              • $begingroup$
                                21 but faster: _%1©½-(Z%1 a½ <U}a¬²r
                                $endgroup$
                                – ASCII-only
                                4 mins ago


















                              $begingroup$
                              21 but faster: _%1©½-(Z%1 a½ <U}a¬²r
                              $endgroup$
                              – ASCII-only
                              4 mins ago






                              $begingroup$
                              21 but faster: _%1©½-(Z%1 a½ <U}a¬²r
                              $endgroup$
                              – ASCII-only
                              4 mins ago




















                              draft saved

                              draft discarded




















































                              If this is an answer to a challenge…




                              • …Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.


                              • …Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
                                Explanations of your answer make it more interesting to read and are very much encouraged.


                              • …Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.



                              More generally…




                              • …Please make sure to answer the question and provide sufficient detail.


                              • …Avoid asking for help, clarification or responding to other answers (use comments instead).





                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bundesstraße 106

                              Verónica Boquete

                              Ida-Boy-Ed-Garten