How to solve $int sin^3(x) cos^2(x) dx$ with integration by parts?
$begingroup$
Surely it's easier to use substitution and trig identities, but I wonder if it's possible to use integration by parts. Here's what I tried
$$int sin^3(x) cos^2(x)dx$$
Let: $u'=cos (x), u = sin (x), v = sin (x) , v'=cos (x)$
$$int v^3 u'^2$$
And here's where I'm stuck, how do I go about this? I'm not sure how to do integration by parts with such exponents
calculus real-analysis integration trigonometry
$endgroup$
add a comment |
$begingroup$
Surely it's easier to use substitution and trig identities, but I wonder if it's possible to use integration by parts. Here's what I tried
$$int sin^3(x) cos^2(x)dx$$
Let: $u'=cos (x), u = sin (x), v = sin (x) , v'=cos (x)$
$$int v^3 u'^2$$
And here's where I'm stuck, how do I go about this? I'm not sure how to do integration by parts with such exponents
calculus real-analysis integration trigonometry
$endgroup$
2
$begingroup$
dont forget the integration symbol dx, you must replace it with some d(new variable) for the integral to make any sense
$endgroup$
– mathreadler
Jan 31 '18 at 20:16
add a comment |
$begingroup$
Surely it's easier to use substitution and trig identities, but I wonder if it's possible to use integration by parts. Here's what I tried
$$int sin^3(x) cos^2(x)dx$$
Let: $u'=cos (x), u = sin (x), v = sin (x) , v'=cos (x)$
$$int v^3 u'^2$$
And here's where I'm stuck, how do I go about this? I'm not sure how to do integration by parts with such exponents
calculus real-analysis integration trigonometry
$endgroup$
Surely it's easier to use substitution and trig identities, but I wonder if it's possible to use integration by parts. Here's what I tried
$$int sin^3(x) cos^2(x)dx$$
Let: $u'=cos (x), u = sin (x), v = sin (x) , v'=cos (x)$
$$int v^3 u'^2$$
And here's where I'm stuck, how do I go about this? I'm not sure how to do integration by parts with such exponents
calculus real-analysis integration trigonometry
calculus real-analysis integration trigonometry
edited Jan 31 '18 at 20:25
Michael Rozenberg
105k1892198
105k1892198
asked Jan 31 '18 at 20:11
TreyTrey
309113
309113
2
$begingroup$
dont forget the integration symbol dx, you must replace it with some d(new variable) for the integral to make any sense
$endgroup$
– mathreadler
Jan 31 '18 at 20:16
add a comment |
2
$begingroup$
dont forget the integration symbol dx, you must replace it with some d(new variable) for the integral to make any sense
$endgroup$
– mathreadler
Jan 31 '18 at 20:16
2
2
$begingroup$
dont forget the integration symbol dx, you must replace it with some d(new variable) for the integral to make any sense
$endgroup$
– mathreadler
Jan 31 '18 at 20:16
$begingroup$
dont forget the integration symbol dx, you must replace it with some d(new variable) for the integral to make any sense
$endgroup$
– mathreadler
Jan 31 '18 at 20:16
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
split your integral and write $$sin(x)^3(1-sin(x)^2)=sin(x)^3-sin(x)^5$$
furthere use that $$sin(x)^3=frac{1}{4} (3 sin (x)-sin (3 x))$$
and $$sin(x)^5=frac{1}{16} (10 sin (x)-5 sin (3 x)+sin (5 x))$$
$endgroup$
add a comment |
$begingroup$
$$int sin ^{ 3 }{ x } cos ^{ 2 }{ x } dx=-int { sin ^{ 2 }{ x } cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =-int { left( 1-cos ^{ 2 }{ x } right) cos ^{ 2 }{ x } dleft( cos { x } right) } =int { cos ^{ 4 }{ x } -cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =frac { cos ^{ 5 }{ x } }{ 5 } -frac { cos ^{ 3 }{ x } }{ 3 } +C$$
$endgroup$
add a comment |
$begingroup$
$$intsin^3xcos^2xdx=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}intsin^4x(-sin{x})dx=$$
$$=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}int(1-cos^2x)^2d(cos{x})=$$
$$=frac{sin^4xcos{x}}{4}-frac{cos{x}}{4}+frac{cos^3x}{6}-frac{cos^5x}{20}+C.$$
$endgroup$
add a comment |
$begingroup$
Since you acknowledge that you can do this with more straightforward substitutions, but are curious about parts, let's show that in can be done with parts.
$int sin^3x cos^2 x dx$
pick something easy to integrate to be $v'$
$v' = sin xcos^2 x$ or $v' = sin^3xcos x$ would be my suggestions.
lets go with the first one.
$u = sin^2 x, dv = sin xcos^2 x dx\
du = 2sin xcos x dx, v = -frac 13 cos^3x$
$-frac 13 cos^3 xsin^2 x + frac 23 int cos^4 xsin x dx\
-frac 13 cos^3 xsin^2 x - frac 2{15} cos^5 x\
frac 15cos^5 x - frac 13 cos^3 x$
$endgroup$
add a comment |
$begingroup$
Integration by parts is unnecessary. Do this
$$int sin^3(x)cos^2(x),dx = int (1-cos^2(x))cos^2(x)sin(x),dx $$
Let $u = cos(x), du = -sin(x),dx$ and this resolves very simply.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2630232%2fhow-to-solve-int-sin3x-cos2x-dx-with-integration-by-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
split your integral and write $$sin(x)^3(1-sin(x)^2)=sin(x)^3-sin(x)^5$$
furthere use that $$sin(x)^3=frac{1}{4} (3 sin (x)-sin (3 x))$$
and $$sin(x)^5=frac{1}{16} (10 sin (x)-5 sin (3 x)+sin (5 x))$$
$endgroup$
add a comment |
$begingroup$
split your integral and write $$sin(x)^3(1-sin(x)^2)=sin(x)^3-sin(x)^5$$
furthere use that $$sin(x)^3=frac{1}{4} (3 sin (x)-sin (3 x))$$
and $$sin(x)^5=frac{1}{16} (10 sin (x)-5 sin (3 x)+sin (5 x))$$
$endgroup$
add a comment |
$begingroup$
split your integral and write $$sin(x)^3(1-sin(x)^2)=sin(x)^3-sin(x)^5$$
furthere use that $$sin(x)^3=frac{1}{4} (3 sin (x)-sin (3 x))$$
and $$sin(x)^5=frac{1}{16} (10 sin (x)-5 sin (3 x)+sin (5 x))$$
$endgroup$
split your integral and write $$sin(x)^3(1-sin(x)^2)=sin(x)^3-sin(x)^5$$
furthere use that $$sin(x)^3=frac{1}{4} (3 sin (x)-sin (3 x))$$
and $$sin(x)^5=frac{1}{16} (10 sin (x)-5 sin (3 x)+sin (5 x))$$
answered Jan 31 '18 at 20:14
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
76.3k42866
76.3k42866
add a comment |
add a comment |
$begingroup$
$$int sin ^{ 3 }{ x } cos ^{ 2 }{ x } dx=-int { sin ^{ 2 }{ x } cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =-int { left( 1-cos ^{ 2 }{ x } right) cos ^{ 2 }{ x } dleft( cos { x } right) } =int { cos ^{ 4 }{ x } -cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =frac { cos ^{ 5 }{ x } }{ 5 } -frac { cos ^{ 3 }{ x } }{ 3 } +C$$
$endgroup$
add a comment |
$begingroup$
$$int sin ^{ 3 }{ x } cos ^{ 2 }{ x } dx=-int { sin ^{ 2 }{ x } cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =-int { left( 1-cos ^{ 2 }{ x } right) cos ^{ 2 }{ x } dleft( cos { x } right) } =int { cos ^{ 4 }{ x } -cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =frac { cos ^{ 5 }{ x } }{ 5 } -frac { cos ^{ 3 }{ x } }{ 3 } +C$$
$endgroup$
add a comment |
$begingroup$
$$int sin ^{ 3 }{ x } cos ^{ 2 }{ x } dx=-int { sin ^{ 2 }{ x } cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =-int { left( 1-cos ^{ 2 }{ x } right) cos ^{ 2 }{ x } dleft( cos { x } right) } =int { cos ^{ 4 }{ x } -cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =frac { cos ^{ 5 }{ x } }{ 5 } -frac { cos ^{ 3 }{ x } }{ 3 } +C$$
$endgroup$
$$int sin ^{ 3 }{ x } cos ^{ 2 }{ x } dx=-int { sin ^{ 2 }{ x } cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =-int { left( 1-cos ^{ 2 }{ x } right) cos ^{ 2 }{ x } dleft( cos { x } right) } =int { cos ^{ 4 }{ x } -cos ^{ 2 }{ x } dleft( cos { x } right) } =\ =frac { cos ^{ 5 }{ x } }{ 5 } -frac { cos ^{ 3 }{ x } }{ 3 } +C$$
answered Jan 31 '18 at 20:15
haqnaturalhaqnatural
20.8k72457
20.8k72457
add a comment |
add a comment |
$begingroup$
$$intsin^3xcos^2xdx=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}intsin^4x(-sin{x})dx=$$
$$=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}int(1-cos^2x)^2d(cos{x})=$$
$$=frac{sin^4xcos{x}}{4}-frac{cos{x}}{4}+frac{cos^3x}{6}-frac{cos^5x}{20}+C.$$
$endgroup$
add a comment |
$begingroup$
$$intsin^3xcos^2xdx=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}intsin^4x(-sin{x})dx=$$
$$=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}int(1-cos^2x)^2d(cos{x})=$$
$$=frac{sin^4xcos{x}}{4}-frac{cos{x}}{4}+frac{cos^3x}{6}-frac{cos^5x}{20}+C.$$
$endgroup$
add a comment |
$begingroup$
$$intsin^3xcos^2xdx=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}intsin^4x(-sin{x})dx=$$
$$=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}int(1-cos^2x)^2d(cos{x})=$$
$$=frac{sin^4xcos{x}}{4}-frac{cos{x}}{4}+frac{cos^3x}{6}-frac{cos^5x}{20}+C.$$
$endgroup$
$$intsin^3xcos^2xdx=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}intsin^4x(-sin{x})dx=$$
$$=frac{sin^4x}{4}cdotcos{x}-frac{1}{4}int(1-cos^2x)^2d(cos{x})=$$
$$=frac{sin^4xcos{x}}{4}-frac{cos{x}}{4}+frac{cos^3x}{6}-frac{cos^5x}{20}+C.$$
answered Jan 31 '18 at 20:17
Michael RozenbergMichael Rozenberg
105k1892198
105k1892198
add a comment |
add a comment |
$begingroup$
Since you acknowledge that you can do this with more straightforward substitutions, but are curious about parts, let's show that in can be done with parts.
$int sin^3x cos^2 x dx$
pick something easy to integrate to be $v'$
$v' = sin xcos^2 x$ or $v' = sin^3xcos x$ would be my suggestions.
lets go with the first one.
$u = sin^2 x, dv = sin xcos^2 x dx\
du = 2sin xcos x dx, v = -frac 13 cos^3x$
$-frac 13 cos^3 xsin^2 x + frac 23 int cos^4 xsin x dx\
-frac 13 cos^3 xsin^2 x - frac 2{15} cos^5 x\
frac 15cos^5 x - frac 13 cos^3 x$
$endgroup$
add a comment |
$begingroup$
Since you acknowledge that you can do this with more straightforward substitutions, but are curious about parts, let's show that in can be done with parts.
$int sin^3x cos^2 x dx$
pick something easy to integrate to be $v'$
$v' = sin xcos^2 x$ or $v' = sin^3xcos x$ would be my suggestions.
lets go with the first one.
$u = sin^2 x, dv = sin xcos^2 x dx\
du = 2sin xcos x dx, v = -frac 13 cos^3x$
$-frac 13 cos^3 xsin^2 x + frac 23 int cos^4 xsin x dx\
-frac 13 cos^3 xsin^2 x - frac 2{15} cos^5 x\
frac 15cos^5 x - frac 13 cos^3 x$
$endgroup$
add a comment |
$begingroup$
Since you acknowledge that you can do this with more straightforward substitutions, but are curious about parts, let's show that in can be done with parts.
$int sin^3x cos^2 x dx$
pick something easy to integrate to be $v'$
$v' = sin xcos^2 x$ or $v' = sin^3xcos x$ would be my suggestions.
lets go with the first one.
$u = sin^2 x, dv = sin xcos^2 x dx\
du = 2sin xcos x dx, v = -frac 13 cos^3x$
$-frac 13 cos^3 xsin^2 x + frac 23 int cos^4 xsin x dx\
-frac 13 cos^3 xsin^2 x - frac 2{15} cos^5 x\
frac 15cos^5 x - frac 13 cos^3 x$
$endgroup$
Since you acknowledge that you can do this with more straightforward substitutions, but are curious about parts, let's show that in can be done with parts.
$int sin^3x cos^2 x dx$
pick something easy to integrate to be $v'$
$v' = sin xcos^2 x$ or $v' = sin^3xcos x$ would be my suggestions.
lets go with the first one.
$u = sin^2 x, dv = sin xcos^2 x dx\
du = 2sin xcos x dx, v = -frac 13 cos^3x$
$-frac 13 cos^3 xsin^2 x + frac 23 int cos^4 xsin x dx\
-frac 13 cos^3 xsin^2 x - frac 2{15} cos^5 x\
frac 15cos^5 x - frac 13 cos^3 x$
answered Dec 12 '18 at 22:09
Doug MDoug M
45.2k31954
45.2k31954
add a comment |
add a comment |
$begingroup$
Integration by parts is unnecessary. Do this
$$int sin^3(x)cos^2(x),dx = int (1-cos^2(x))cos^2(x)sin(x),dx $$
Let $u = cos(x), du = -sin(x),dx$ and this resolves very simply.
$endgroup$
add a comment |
$begingroup$
Integration by parts is unnecessary. Do this
$$int sin^3(x)cos^2(x),dx = int (1-cos^2(x))cos^2(x)sin(x),dx $$
Let $u = cos(x), du = -sin(x),dx$ and this resolves very simply.
$endgroup$
add a comment |
$begingroup$
Integration by parts is unnecessary. Do this
$$int sin^3(x)cos^2(x),dx = int (1-cos^2(x))cos^2(x)sin(x),dx $$
Let $u = cos(x), du = -sin(x),dx$ and this resolves very simply.
$endgroup$
Integration by parts is unnecessary. Do this
$$int sin^3(x)cos^2(x),dx = int (1-cos^2(x))cos^2(x)sin(x),dx $$
Let $u = cos(x), du = -sin(x),dx$ and this resolves very simply.
answered Dec 12 '18 at 21:52
ncmathsadistncmathsadist
42.9k260103
42.9k260103
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2630232%2fhow-to-solve-int-sin3x-cos2x-dx-with-integration-by-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
dont forget the integration symbol dx, you must replace it with some d(new variable) for the integral to make any sense
$endgroup$
– mathreadler
Jan 31 '18 at 20:16